OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 35 — Dec. 10, 2001
  • pp: 6515–6526

Six-degrees-of-freedom alignment of two-dimensional array components by use of off-axis linear Fresnel zone plates

Michael H. Ayliffe, Marc Châteauneuf, David R. Rolston, Andrew G. Kirk, and David V. Plant  »View Author Affiliations

Applied Optics, Vol. 40, Issue 35, pp. 6515-6526 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel six-degrees-of-freedom (six-DOFs) alignment technique for assembling two-dimensional array components is presented. The technique uses off-axis linear Fresnel zone plates on one component that are combined with alignment targets on the other. The technique is compact and sensitive to all six DOFs; it was used to package an array of microlenses with a 32 × 32 array of GaAs multiple-quantum-well modulators flip-chip bonded to a 9 mm × 9 mm complementary-metal-oxide-semiconductor chip. By use of interference fringes to control the tilt misalignment, the worst-case misalignment of the microlenses relative to the chip is calculated to be as follows: lateral = 3.0 µm, rotational = 0.023°, longitudinal = 13 µm, and tilt = 0.022°. We also propose alternative implementations of the technique, including one that uses on-chip photodetectors to automate this six-DOF alignment technique.

© 2001 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(060.4510) Fiber optics and optical communications : Optical communications
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: January 9, 2001
Revised Manuscript: August 22, 2001
Published: December 10, 2001

Michael H. Ayliffe, Marc Châteauneuf, David R. Rolston, Andrew G. Kirk, and David V. Plant, "Six-degrees-of-freedom alignment of two-dimensional array components by use of off-axis linear Fresnel zone plates," Appl. Opt. 40, 6515-6526 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” in Proc. IEEE 72, 850–866 (1984). [CrossRef]
  2. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996). [CrossRef]
  3. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibengath, S. P. Hui, G. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11, 128–130 (1999). [CrossRef]
  4. D. V. Plant, J. A. Trezza, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, W. Luo, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” in Optics in Computing 2000, R. A. Lessard, T. Galstian eds., Proc. SPIE4089, 1046–1054 (2000). [CrossRef]
  5. A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998). [CrossRef]
  6. J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Large format smart pixel arrays and their applications,” in 1998 IEEE Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1998), Vol. 5, pp. 299–310. [CrossRef]
  7. A. Erlich, “Micro-optical integration spurs mass production,” Laser Focus World 34, 77–81 (1998).
  8. D. T. Neilson, “Tolerance of optical interconnections to misalignment,” Appl. Opt. 38, 2282–2290 (1999). [CrossRef]
  9. M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. Galstian eds., Proc. SPIE4089, 905–916 (2000). [CrossRef]
  10. D. T. Neilson, E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2952 (1998). [CrossRef]
  11. M. H. Ayliffe, D. R. Rolston, A. E. L. Chuah, E. Bernier, F. S. J. Michael, D. Kabal, A. G. Kirk, D. V. Plant, “Design and testing of a kinematic package supporting a 32 × 32 array of GaAs MQW modulators flip-chip bonded to a CMOS chip,” IEEE J. Lightwave Technol. 19, 1543–1559 (2001). [CrossRef]
  12. A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, J. A. Trezza, F. A. P. Tooley, D. R. Rolston, M. H. Ayliffe, F. Lacroix, D. Kabal, B. Robertson, E. Bernier, D. F.-Brosseau, F. S. J. Michael, E. L. Chuah, “A modulator-based multistage free-space optical interconnection system,” in Optics in Computing 2000, R. A. Lessard, T. Galstian eds., Proc. SPIE4089, 449–459 (2000). [CrossRef]
  13. R. Boudreau, “Passive optical alignment methods,” in Proceedings of the Third International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 180–181. [CrossRef]
  14. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992). [CrossRef] [PubMed]
  15. E. Bisaillon, T. Yamamoto, D.F.- Brosseau, E. Bernier, D. Godwill, A. G. Kirk, D. V. Plant, “Optical link for an adaptive redundant free-space interconnect,” in Optics in Computing 2000, R. A. Lessard, T. Galstian eds., Proc. SPIE4089, 999–1009 (2000). [CrossRef]
  16. P. Sheer, T. Collette, P. Churoux, “Free-space optical interconnection within SIMD massively parallel computers,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnects, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 167–177. [CrossRef]
  17. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992). [CrossRef]
  18. N. R. Basavanhally, M. F. Brady, D. B. Buchholz, “Optoelectronic packaging of two-dimensional surface active devices,” IEEE Trans. Components Packag. Manuf. Technol. Part B 19, 107–115 (1996). [CrossRef]
  19. N. R. Basavanhally, “Opto-mechanical alignment and assembly of 2D-array components,” in Technical Digest of the IEEE Princeton Section Sarnoff Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 23–27. [CrossRef]
  20. R. A. Boudreau, H. Han, M. Kadar-Kallen, J. R. Rowlette, “Kinematic mounting of optical and optoelectronic elements on silicon waferboard,” U.S. patent5,574,561 (12November1996).
  21. D. Miyazaki, S. Masuda, K. Matsushita, “Self-alignment with optical microconnectors for free-space optical interconnections,” Appl. Opt. 37, 228–232 (1998). [CrossRef]
  22. V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of optical multi-chip-module interconnects: comparing guided-wave and free-space pathways,” J. Opt. A: Pure Appl. Opt. 1, 255–261 (1999).
  23. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconect based on arrays of vertical-cavity lasers and detectors with monotlithic microlenses,” Appl. Opt. 37, 2811–2821 (1998). [CrossRef]
  24. S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994). [CrossRef]
  25. P. N. Everett, W. F. Delaney, “Aligning lithography on opposite surfaces of a substrate,” Appl. Opt. 31, 7292–7294 (1992). [CrossRef] [PubMed]
  26. M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996). [CrossRef]
  27. Y. Y. Kipman, P. A. McDonald, R. D. Schuchatowitz, “System and method for aligning a first surface with respect to a second surface,” U.S. patent5,532,815 (2July1996).
  28. J. M. Sasian, D. A. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995). [CrossRef]
  29. B. Robertson, Y. Liu, G. C. Boisset, M. R. Taghizadeh, D. V. Plant, “In situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 36, 9253–9260 (1997). [CrossRef]
  30. G. C. Boisset, B. Robertson, W. S. Hsiao, M. R. Taghizadeh, J. Simmons, K. Song, M. Matin, D. A. Thompson, D. V. Plant, “On-die diffractive alignment structures for packaging of microlens arrays with 2-D optoelectronics device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996). [CrossRef]
  31. E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass.1998).
  32. J. Jahns, W. Däschner, “Precise alignment through thick wafers using an optical copying technique,” Opt. Lett. 17, 390–392 (1992). [CrossRef] [PubMed]
  33. P. Aubert, H. J. Oguey, R. Vuilleumier, “Monolithic optical position encoder with on-chip photodiodes,” IEEE J. Solid-State Circuits 23, 465–473 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited