OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6587–6595

Calibration Method for the Lidar-Observed Stratospheric Depolarization Ratio in the Presence of Liquid Aerosol Particles

Hiroshi Adachi, Takashi Shibata, Yasunobu Iwasaka, and Motowo Fujiwara  »View Author Affiliations

Applied Optics, Vol. 40, Issue 36, pp. 6587-6595 (2001)

View Full Text Article

Acrobat PDF (191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fine calibration of the depolarization ratio is required for a detailed interpretation of lidar-observed polar stratospheric clouds. We propose a procedure for analyzing data by using atmospheric depolarization lidar. The method is based on a plot of δ<sub><i>T</i></sub> versus (1 − <i>R</i><sub><i>T</i></sub><sup>−1</sup>), where δ<sub><i>T</i></sub> is the total depolarization ratio and <i>R</i><sub><i>T</i></sub> is the total backscattering ratio. Assuming that there are only spherical particles in some altitude ranges of the lidar data, the characteristics of the plot of δ<sub><i>T</i></sub> versus (1 − <i>R</i><sub><i>T</i></sub><sup>−1</sup>) lead to a simple but effective calibration method for δ<sub><i>T</i></sub>. Additionally, the depolarization of air molecules δ<sub><i>m</i></sub> can be determined in the process of δ<sub><i>T</i></sub> calibration. We compared determined values with theoretically calculated values for the depolarization of air to test the proposed method. The δ<sub><i>m</i></sub> value was calculated from the lidar data acquired at Ny-Ålesund (79 °N, 12 °E), Svalbard in winter 1994–1995. When only sulfate aerosols were present on 24 December 1994, δ<sub><i>m</i></sub> was 0.46 ∓ 0.35%. When the particles consisted of sulfate aerosols and spherical particles of polar stratospheric clouds on 4 January 1995, δ<sub><i>m</i></sub> was 0.45 ∓ 0.07%. Both δ<sub><i>m</i></sub> values were in good agreement with the theoretically calculated value, 0.50 ∓ 0.03%.

© 2001 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar

Hiroshi Adachi, Takashi Shibata, Yasunobu Iwasaka, and Motowo Fujiwara, "Calibration Method for the Lidar-Observed Stratospheric Depolarization Ratio in the Presence of Liquid Aerosol Particles," Appl. Opt. 40, 6587-6595 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
  2. S. R. Pal and A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
  3. C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
  4. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
  5. Y. Iwasaka and S. Hayashida, “The effect of the volcanic eruption of St. Helens on the polarization properties of stratospheric aerosols: lidar measurement at Nagoya,” J. Meteorol. Soc. Jpn. 59, 611–614 (1981).
  6. D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett. 19, 171–175 (1992).
  7. Y. Iwasaka, T. Hirasawa, and H. Fukunishi, “Lidar measurement of the Antarctic stratospheric aerosol layer. I. winter enhancement,” J. Geomagn. Geoelectr. 37, 1087–1095 (1985).
  8. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
  9. L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Schaffner, and M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
  10. L. Stefanutti, M. Morandi, M. D. Guasta, S. Godin, and C. David, “Unusual PSCs observed by LIDAR in Antarctica,” Geophys. Res. Lett. 22, 2377–2380 (1995).
  11. T. Shibata, Y. Iwasaka, M. Fujiwara, M. Hayashi, M. Nagatani, K. Shiraishi, H. Adachi, T. Sakai, K. Susumu, and N. Nakura, “Polar stratospheric clouds observed by lidar over Spitsbergen in the winter of 1994/1995: liquid particles and vertical “sandwich” structure,” J. Geophys. Res. 102, 10829–10840 (1997).
  12. J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations,” Geophys. Res. Lett. 27, 201–204 (2000).
  13. T. Shibata, K. Shiraishi, H. Adachi, Y. Iwasaka, and M. Fujiwara, “On the lidar observed sandwich structure of polar stratospheric clouds. I. implications for the mixing state of the PSC particles,” J. Geophys. Res. 104, 21603–21611 (1999).
  14. T. Shibata, “On the lidar observed sandwich structure of polar stratospheric clouds. II. numerical simulations of externally mixed PSC particles,” J. Geophys. Res. 104, 21613–21619 (1999).
  15. G. S. Kent, L. R. Poole, M. P. McCormick, S. K. Schaffner, W. H. Hunt, and M. T. Osborn, “Optical backscatter characteristics of Arctic polar stratospheric clouds,” Geophys. Res. Lett. 17, 377–380 (1990).
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  18. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, New York, 1996).
  19. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, “The relationship of interference filter to depolarization ratio of air molecules and correction method of total depolarization ratio” (in Japanese), in Abstract of Papers, 19th Japanese Laser Sensing Symposium, T. Itabe, ed. (Communications Research Laboratory, Brussels, Belgium, 1998), pp. 101–102.
  20. C. M. Penney, “Light scattering in terms of oscillator strengths and refractive indices,” J. Opt. Soc. Am. 59, 34–42 (1969).
  21. C. M. Penney, P. L. St. Peters, and M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
  22. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, UK, 1983).
  23. R. Goody, Principles of Atmospheric Physics and Chemistry (Oxford University, New York, 1995).
  24. P. B. Russel, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
  25. T. Ogawa, and Y. Koyanagi, Data Analysis by Least Squares Method (in Japanese) (Tokyo University, Tokyo, 1982).
  26. C. E. Junge, C. W. Chagnon, and J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–108 (1961).
  27. E. E. Remsberg, J. M. Russell III, L. L. Gordley, J. C. Gille, and P. L. Bailey, “Implications of the stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment,” J. Atmos. Sci. 41, 2934–2945 (1984).
  28. J. C. Gille and J. M. Russell III, “The Limb infrared monitor of the stratosphere: experiment description, performance, and results,” J. Geophys. Res. 87, 5179–5190 (1984).
  29. D. Hanson and K. Mauersberger, “Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere,” Geophys. Res. Lett. 15, 855–858 (1988).
  30. L. Stefanutti, M. Morandi, and M. D. Guasta, “Polar stratospheric cloud observations over the antarctic continent at Dumont d’Urvillem,” J. Geophys. Res. 96, 12975–12987 (1991).
  31. K. Stebel, O. Schrems, R. Neuber, G. Beyerle, P. von der Gathen, and B. Knudsen, “Lidar observations of polar stratospheric clouds in the Arctic (Spitsbergen),” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, and G. T. Amanatidis, eds. European Commission Air Pollution Report (European Commission, Brussels, Belgium, 1995), pp. 113–116.
  32. C. Flesia, A. Mugnai, Y. Emery, S. Godin, L. de Schoulepnikoff, and V. Mitev, “Interpretation of lidar depolarization measurements of the Pinatubo stratospheric aerosol layer during EASOE,” Geophys. Res. Lett. 21, 1443–1446 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited