OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6596–6605

Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves

Malik Rakhmanov  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6596-6605 (2001)
http://dx.doi.org/10.1364/AO.40.006596


View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Demodulation of intensity noise in the optical heterodyne detector is analyzed for application in interferometric gravitational-wave detectors. The correlation function and the power spectral density of the demodulated intensity noise are derived, taking into account the effect of bandpass filtering at the photodiode and an arbitrary demodulation waveform. The analysis includes demodulation of the rf-modulated shot noise as a special case of the intensity noise. For shot-noise-limited detection, the signal-to-noise ratio is found as a function of the modulation parameters, and the optimization of the signal-to-noise ratio with respect to the demodulation phase is described.

© 2001 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.2840) Detectors : Heterodyne
(040.5160) Detectors : Photodetectors
(060.5060) Fiber optics and optical communications : Phase modulation

History
Original Manuscript: August 15, 2000
Revised Manuscript: August 27, 2001
Published: December 20, 2001

Citation
Malik Rakhmanov, "Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves," Appl. Opt. 40, 6596-6605 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991). [CrossRef] [PubMed]
  2. B. Meers, K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991). [CrossRef] [PubMed]
  3. N. Mio, K. Tsubono, “Observation of an effect due to non-stationary shot noise,” Phys. Lett. A 164, 255–258 (1992). [CrossRef]
  4. M. B. Gray, A. J. Stevenson, H.-A. Bachor, D. E. McClelland, “Harmonic demodulation of nonstationary shot noise,” Opt. Lett. 18, 759–761 (1993). [CrossRef] [PubMed]
  5. P. Winzer, “Shot-noise formula for time-varying photon rates: a general derivation,” J. Opt. Soc. Am. B 14, 2424–2429 (1997). [CrossRef]
  6. T. T. Lyons, M. W. Regehr, F. Raab, “Shot noise in gravitational-wave detectors with Fabry-Perot arms,” Appl. Opt. 39, 6761–6770 (2000). [CrossRef]
  7. A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  8. C. Bradaschia, R. Delfabbro, A. Divirgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Mann, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Difiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Lederman, P. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: a wide band antenna for gravitational-wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990). [CrossRef]
  9. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA 300) in Japan” in Proceedings of the first Eduardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  10. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  11. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (WCB/McGraw-Hill, Boston, Mass., 1991).
  12. M. Rakhmanov, “Dynamics of laser interferometric gravitational wave detectors,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 2000).
  13. J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurement Procedures, 2nd ed. (Wiley, Singapore, 1991).
  14. This observation was made by F. Raab during a discussion of the nonstationary shot noise in the 40-m prototype of LIGO interferometers at Caltech, Pasadena, Calif., (1996).
  15. K. S. Thorne, “Gravitational radiation,” in Three Hundred Years of Gravitation, S. W. Hawking, W. Israel, eds. (Cambridge University, Cambridge, England, 1987), pp. 330–458.
  16. W. Davenport, W. Root, Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958).
  17. R. Loudon, Quantum Theory of Light, 2nd ed. (Oxford University, London, 1983).
  18. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited