OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6638–6645

Chromium-Doped LiCAF Laser Passively Q Switched with a V3+:YAG Crystal

Jan K. Jabczyński, Waldemar Zendzian, Zygmunt Mierczyk, and Zygmunt Frukacz  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6638-6645 (2001)
http://dx.doi.org/10.1364/AO.40.006638


View Full Text Article

Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable, lamp-pumped Cr3+:LiCaAlF6 laser that operates in the 760–800-nm wavelength range is demonstrated. As a passive Q switch the V3+:YAG crystal, characterized by wide saturable absorption in the 760–900-nm wavelength range, was applied. The V3+:YAG parameters were determined by spectroscopic and saturable transmission measurements. The 30-mJ output energy at 2-Hz repetition rate in the free-running regime was obtained in a cavity reinforced by a diaphragm near the fundamental mode. The dispersive prism inserted into the cavity enabled tuning in the 760–800-nm wavelength range. In the passive Q-switching regime we achieved greater than 1-mJ energy with 50-ns pulse duration in a 35-cm-long cavity. A numerical model that takes into account the short recovery time of V3+:YAG (~5 ns) and excited-state absorption was used to analyze such a laser.

© 2001 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.5320) Materials : Photorefractive materials

Citation
Jan K. Jabczyński, Waldemar Zendzian, Zygmunt Mierczyk, and Zygmunt Frukacz, "Chromium-Doped LiCAF Laser Passively Q Switched with a V3+:YAG Crystal," Appl. Opt. 40, 6638-6645 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6638


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Mroziewicz, M. Bugajski, and W. Nakwaski, Physics of Semiconductor Lasers (Polish Scientific, Warsaw, 1991), Chaps. 4 and 5.
  2. T. Amand and X Marie, “Pulsed semiconductor lasers,” in Femtosecond Laser Pulses: Principles and Experiments, C. Rulliere, ed. (Springer-Verlag, Berlin, 1998).
  3. N. P. Barnes, “Transition metal solid-state lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995).
  4. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996), Chap. 5.
  5. P. Lacovera, L. Esterowitz, and R. Allen, “Flashlamp-pumped Ti3+:Al2O3 laser using fluorescent conversion,” Opt. Lett. 10, 273–275 (1985).
  6. P. F. Moulton, “Spectroscopic and laser characteristics of Ti3+:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
  7. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser materials,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
  8. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1055 (1989).
  9. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigations of laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
  10. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Properties of LiSrAlF6:Cr3+ crystals for laser operation,” Appl. Opt. 33, 5526–5535 (1989).
  11. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
  12. P. A. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1068 (1992).
  13. P. A. Beaud, M. C. Richardson, Y.-F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr:LiSAF and Cr:LiCAF under flashlamp pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
  14. Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
  15. J. F. Pinto and L. Esterowitz, “Unstable Cr:LiSAF laser resonator with a variable reflectivity output coupler,” Appl. Opt. 37, 3272–3275 (1998).
  16. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSAF laser,” Opt. Lett. 16, 820–823 (1991).
  17. Q. Zhang, B. H. T. Chai, P. N. Kean, and G. J. Dixon, “Electronically tuned diode-laser-pumped Cr:LiSrGaF6 laser,” Opt. Lett. 17, 43–45 (1992).
  18. J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, “Diode-pumped, single-frequency, Cr:LiSAF coupled-cavity microchip laser,” Opt. Commun. 113, 458–462 (1995).
  19. M. P. Critten, B. Burns, J. M. Evans, K. Lamb, C. Yelland, and W. Sibbett, “All-solid-state femtosecond Cr3+:LiSAF lasers pumped at 532 nm and 670 nm,” J. Mod. Opt. 43, 919–927 (1996).
  20. R. Knappe, G. Bitz, K.-J. Boller, and R. Wallenstein, “Compact single-frequency diode-pumped Cr:LiSAF lasers,” Opt. Commun. 143, 42–46 (1997).
  21. D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 235–243 (1997).
  22. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
  23. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–277 (1997).
  24. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
  25. G. J. Spuhler, R. Pashotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
  26. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72, 175–178 (2001).
  27. V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokoshin, K. V. Yumashev, and V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
  28. V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, V. A. Sandulenko, K. V. Yumashev, and P. V. Prokoshin, “Mode-locking of near infrared lasers with YAG:V3+ crystal as a saturable absorber,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993).
  29. V. G. Shcherbitsky, N. N. Prosnov, V. P. Mikhailow, and V. A. Sandulenko, “Ultrafast dynamics of excited-state absorption in YAG:V3+ crystal,” J. Appl. Phys. 80, 4782–4788 (1996).
  30. V. P. Mikhailov, K. V. Yumashev, N. V. Kuleshov, A. M. Malyarevich, V. G. Shcherbitsy, P. V. Prokoshin, and N. N. Posnov, “Ultrafast dynamics of excited-state absorption in YAG:V3+,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  31. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG- a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998).
  32. Z. Mierczyk and Z. Frukacz, “YAG:V3+- new passive Q-switch for lasers generating radiation within the near infrared range,” Opto-Electronics Rev. 8, 67–74 (2000).
  33. J. K. Jabczyński, A. Agnesi, A. Guandalini, G. C. Reali, K. Kopczyński, and Z. Mierczyk, “Application of V3+:YAG crystals for Q-switching and mode-locking of 1.3-μm diode pumped neodymium,” Opt. Eng. (to be published).
  34. H. Jelinkova, P. Czerny, J. Szulc, J. K. Jabczyński, K. Kopczyński, and Z. Mierczyk, “Q-switching and mode locking by means of V:YAG crystal in lamp pumped 1.34 μm Nd:YAP laser,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference Focus Meetings (European Physical Society, Mulhouse Cedex, France, 2001).
  35. M. J. Weber and L. A. Riseberg, “Optical spectra in yttrium aluminum garnet,” J. Chem. Phys. 55, 2032–2038 (1971).
  36. M. Hercher, “An analysis of saturable absorbers,” Appl. Opt. 6, 947–954 (1967).
  37. G. Xiao, J. H. Lim, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
  38. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
  39. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
  40. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG up-conversion and bleaching,” IEEE J. Quantum Electron. 34, 901–908 (1998).
  41. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
  42. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited