OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6677–6681

Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: a unique scheme for remote detection of explosives

Talya Arusi-Parpar, Dov Heflinger, and Raphael Lavi  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6677-6681 (2001)
http://dx.doi.org/10.1364/AO.40.006677


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A unique scheme has been applied for sensitive remote detection of 2,4,6-trinitrotoluene (TNT) vapor trace amounts at atmospheric pressure and 24 °C. The detection concept is based on a single laser beam inducing a tandem process: photodissociation of TNT vapor followed by highly selective detection of its photofragments vibrationally excited NO, utilizing laser-induced fluorescence with the A2Σ+(v′ = 0) ← X2Π(v″ = 2) transition. A detection sensitivity of at least 8 parts in 109 of TNT vapor with a signal-to-noise ratio of approximately 10 has been experimentally verified for an unfocused ∼5-mJ laser beam, measured at a distance of ∼15 cm from the TNT sample.

© 2001 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: January 18, 2001
Revised Manuscript: June 25, 2001
Published: December 20, 2001

Citation
Talya Arusi-Parpar, Dov Heflinger, and Raphael Lavi, "Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: a unique scheme for remote detection of explosives," Appl. Opt. 40, 6677-6681 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. Steinfeld, J. Wormhoudt, “Explosive detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998). [CrossRef]
  2. K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995). [CrossRef]
  3. P. Kolla, “Detecting hidden explosives,” Anal. Chem. 67, 184–189 (1995). [CrossRef]
  4. J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996). [CrossRef] [PubMed]
  5. F. J. Effenberger, A. G. Mercado, “Explosive vapor detection via mid-infrared laser spectroscopy,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 104–112 (1998). [CrossRef]
  6. I. R. Lewis, N. W. Daniel, P. R. Griffiths, “Interpretation of Raman spectra of nitro-containing explosive materials. Part I: Group frequency and structural class membership,” Appl. Spectrosc. 51, 1854–1867 (1997). [CrossRef]
  7. B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).
  8. D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996). [CrossRef] [PubMed]
  9. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Y. Yueh, D. L. Monts, “Development of a photofragmentation–laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999). [CrossRef]
  10. R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2 from NO by laser photofragmentation with fragment ionization at 266 and 452 nm: quantitative analysis of NO–NO2 mixtures,” Appl. Opt. 39, 2487–2495 (2000). [CrossRef]
  11. R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2+2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996). [CrossRef] [PubMed]
  12. V. Swayambunathan, R. C. Sausa, G. Singh, “Laser photofragmentation/fragment detection and pyrolysis/laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999). [CrossRef]
  13. N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).
  14. J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999). [CrossRef]
  15. J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000). [CrossRef]
  16. J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000). [CrossRef]
  17. R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995). [CrossRef]
  18. D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993). [CrossRef]
  19. R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1984).
  20. A. D. Usachev, T. S. Miller, J. P. Singh, F.-U. Yueh, P.-R. Jang, D. L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55, 125–129 (2001). [CrossRef]
  21. J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+–X2Π and D2Σ+–X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999). [CrossRef]
  22. J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532. [CrossRef]
  23. T. A. Griffy, “A model of explosive vapor concentration II,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 503–511. [CrossRef]
  24. E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).
  25. R. A. Crane, “Laser optoacoustic absorption spectra for various explosive vapors,” Appl. Opt. 17, 2097–2102 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited