OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6682–6700

Calibration of SeaWiFS. I. Direct Techniques

Robert A. Barnes, Robert E. Eplee, G. Michael Schmidt, Frederick S. Patt, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6682-6700 (2001)
http://dx.doi.org/10.1364/AO.40.006682


View Full Text Article

Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an overview of the calibration of the Sea-viewing Wide Field-of View Sensor (SeaWiFS) from its performance verification at the manufacturer’s facility to the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument’s calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4–5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument’s prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6550) Spectroscopy : Spectroscopy, visible

Citation
Robert A. Barnes, Robert E. Eplee, G. Michael Schmidt, Frederick S. Patt, and Charles R. McClain, "Calibration of SeaWiFS. I. Direct Techniques," Appl. Opt. 40, 6682-6700 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6682


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
  2. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 104566 1, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  3. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, and R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 104566 3, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  4. R. H. Evans, and H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
  5. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
  6. R. A. Barnes, R. E. Eplee Jr., F. S. Patt, and C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
  7. R. A. Barnes, W. L. Barnes, W. E. Esaias, and C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, NASA Tech. Memo. 104566 22, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  8. R. A. Barnes and A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE 1939, 224–232 (1993).
  9. R. E. Eplee, Jr., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
  10. R. A. Barnes, “SeaWiFS data: actual and simulated,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), from http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat.
  11. B. C. Johnson, E. A. Early, R. E. Eplee Jr., R. A. Barnes, and R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999–206892 4, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  12. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, and T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566 23, S. B. Hooker, E. R. Firestone and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  13. R. A. Barnes, and R. E. Eplee Jr., “The 1993 SeaWiFS calibration using band-averaged spectral radiances,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566 40, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 39–47.
  14. E. A. Early, and B. C. Johnson, “Calibration and characterization of the GSFC sphere,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 104566 41, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 3–17.
  15. B. C. Johnson, J. B. Fowler, and C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998–206892 1, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).
  16. R. A. Barnes, A. W. Holmes, and W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 104566 31, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  17. E-n. Yeh, M. Darzi, and L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 104566 41, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.
  18. R. A. Barnes, R. E. Eplee, Jr., S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, and A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
  19. R. A. Barnes, and R. E. Eplee, Jr., “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566 39, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996) pp. 54–61.
  20. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
  21. M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
  22. R. A. Barnes, R. E. Eplee, Jr., and F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE 3498, 311–324 (1998).
  23. R. A. Barnes and C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE 3870, 214–227 (1999).
  24. H. H. Kieffer and R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
  25. H. H. Kieffer and J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE 3498, 325–336 (1998).
  26. H. H. Kieffer, J. M. Anderson, and K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE 3870, 193–205 (1999).
  27. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
  28. P. Helfenstein and J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
  29. R. E. Eplee, Jr. and R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000–206892 9, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 17–27.
  30. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
  31. M. Wang and S. W. Bailey, “Correction of the sunglint contamination on the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000–206892 9, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 64–68.
  32. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
  33. W. D. Robinson, G. M. Schmidt, C. R. McClain, and P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000–206892 10, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.
  34. B. D. Schieber and J. K. Firestone, “The generation of CZCS ancillary data sets for simulated SeaWiFS processing,” in Case Studies for SeaWiFS Calibration and Validation, Part 2, NASA Tech. Memo. 104566 19, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).
  35. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
  36. B. Chen, K. Stamnes, B. Yan, Ø. Frette, and J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).
  37. M. Wang, “The SeaWiFS atmospheric correction algorithm updates,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000–206892 9, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  38. G. E. Shaw, “Atmospheric turbidity in the polar regions,” J. App. Meterol. 21, 1080–1088 (1982).
  39. A. Herber, L. W. Thomason, V. F. Radionov, and U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
  40. W. M. Porter and H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE 834, 22–31 (1987).
  41. R. Green and T. G. Chrien, “High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons,” in SIMBIOS Project 1998 Annual Report, NASA Tech. Memo. 1999–208645, C. R. McClain and G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  42. E. E. Whittington, K. J. Thome, R. A. Barnes, and K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE 4135, 294–301 (2000).
  43. M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, and N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited