OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6701–6718

Calibration of SeaWiFS. II. Vicarious techniques

Robert E. Eplee, Jr., Wayne D. Robinson, Sean W. Bailey, Dennis K. Clark, P. Jeremy Werdell, Menghua Wang, Robert A. Barnes, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6701-6718 (2001)
http://dx.doi.org/10.1364/AO.40.006701


View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an overview of the vicarious calibration of the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). This program has three components: the calibration of the near-infrared bands so that the atmospheric correction algorithm retrieves the optical properties of maritime aerosols in the open ocean; the calibration of the visible bands against in-water measurements from the Marine Optical Buoy (MOBY); and a calibration-verification program that uses comparisons between SeaWiFS retrievals and globally distributed in situ measurements of water-leaving radiances. This paper describes the procedures as implemented for the third reprocessing of the SeaWiFS global mission data set. The uncertainty in the near-infrared vicarious gain is 0.9%. The uncertainties in the visible-band vicarious gains are 0.3%, corresponding to uncertainties in the water-leaving radiances of approximately 3%. The means of the SeaWiFS/in situ matchup ratios for water-leaving radiances are typically within 5% of unity in Case 1 waters, while chlorophyll a ratios are within 1% of unity. SeaWiFS is the first ocean-color mission to use an extensive and ongoing prelaunch and postlaunch calibration program, and the matchup results demonstrate the benefits of a comprehensive approach.

© 2001 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: October 24, 2000
Revised Manuscript: June 18, 2001
Published: December 20, 2001

Citation
Robert E. Eplee, Wayne D. Robinson, Sean W. Bailey, Dennis K. Clark, P. Jeremy Werdell, Menghua Wang, Robert A. Barnes, and Charles R. McClain, "Calibration of SeaWiFS. II. Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, G. Mitchell, R. Barnes, Calibration and Validation Plan for SeaWiFS, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  2. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).
  3. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265–278 (1998). [CrossRef]
  4. R. H. Evans, H. R. Gordon, “Coastal zone color scanner system calibration: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994). [CrossRef]
  5. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997). [CrossRef]
  6. S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000). [CrossRef]
  7. C. R. McClain, “SeaWiFS postlaunch calibration and validation overview,” in SeaWiFS postlaunch calibration and validation analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  8. R. A. Barnes, R. E. Eplee, G. M. Schmidt, F. S. Patt, C. R. McClain, “The calibration of SeaWiFS. I: Direct techniques,” Appl. Opt. 40, 6682–6700 (2001). [CrossRef]
  9. B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, in The 1997 Prelaunch Radiometric Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  10. R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “The SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000). [CrossRef]
  11. R. E. Eplee, R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  12. R. E. Eplee, C. R. McClain, “MOBY data analysis for the vicarious calibration of SeaWiFS bands 1–6,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  13. W. D. Robinson, M. Wang, “Vicarious calibration of SeaWiFS band 7,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  14. S. W. Bailey, C. R. McClain, P. J. Werdell, B. D. Schieber, “Normalized water-leaving radiance and chlorophyll a match-up analysis,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 1999-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  15. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  16. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus 7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  17. M. Wang, S. Bailey, “Correction of the sunglint contamination of the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  18. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33, 7754–7763 (1994). [CrossRef] [PubMed]
  19. R. Frouin, M. Schwindling, P. Y. Descahmps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing applications,” J. Geophys. Res. 101, 14361–14371 (1996). [CrossRef]
  20. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: instrumentation, calibration, and performance in coastal waters,” J. Atmos. Ocean. Tech. 15, 496–509 (1998). [CrossRef]
  21. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000). [CrossRef]
  22. W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 1999-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  23. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  24. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  25. M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999). [CrossRef]
  26. H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Solar Phys. 90, 205–258 (1984). [CrossRef]
  27. A. Berk, L. S. Bernstein, D. C. Robertson, MODTRAN: a Moderate Resolution Model for LOWTRAN7, (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).
  28. A. Morel, B. Gentili, “Diffuse reflectance of ocean waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  29. J. L. Mueller, “Overview of measurement and data analysis protocol,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, NASA Tech. Memo. 2000-209966, G. S. Fargion, J. L. Mueller, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  30. M. Wang, “SeaWiFS atmospheric correction algorithm updates,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 1999-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  31. D. A. Siegel, M. Wang, S. Maritorena, W. D. Robinson, “Atmospheric correction of satellite color color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000). [CrossRef]
  32. P. J. Werdell, S. Bailey, G. S. Fargion, “SeaBASS data protocols and policy,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, NASA Tech. Memo. 2000-209966, G. S. Fargion, J. L. Mueller, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  33. M. Wang, S. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” Eos Trans. Am. Geophys. Union 81, 197, 202 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited