OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 36 — Dec. 20, 2001
  • pp: 6719–6724

Sensitive Absorption Spectroscopy by Use of an Asymmetric Multiple-Quantum-Well Diode Laser in an External Cavity

Sean C. Woodworth, Daniel T. Cassidy, and Michael J. Hamp  »View Author Affiliations


Applied Optics, Vol. 40, Issue 36, pp. 6719-6724 (2001)
http://dx.doi.org/10.1364/AO.40.006719


View Full Text Article

Acrobat PDF (134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a broadly tunable diode laser system by employing custom-designed asymmetric multiple-quantum-well (AMQW) InGaAsP lasers in an external cavity configuration. Feedback is provided by a diffractive optical element with high coupling efficiency and wavelength selectivity, allowing for single-mode tuning of the output wavelength by varying the external cavity length. This tunable laser system was used experimentally to perform absorption spectroscopy on weak CO<sub>2</sub> lines over a broad wavelength region in the near infrared. An experimental tuning range of 80 nm has been observed for a laser cavity length of 600 μm, which is double the tuning range found with conventional, uncoated quantum-well lasers. We achieved a detection sensitivity of 5 × 10<sup>−6</sup> at 95% confidence over the wavelength range of 1.54–1.62 μm by employing a second-harmonic detection technique. The theoretical predictions of a broad gain profile from an ambipolar rate equation model are found to correspond to the experimentally observed increased tunability of the uncoated AMQW lasers.

© 2001 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Citation
Sean C. Woodworth, Daniel T. Cassidy, and Michael J. Hamp, "Sensitive Absorption Spectroscopy by Use of an Asymmetric Multiple-Quantum-Well Diode Laser in an External Cavity," Appl. Opt. 40, 6719-6724 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-36-6719


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Y. Mandin, L. R. Brown, V. Nemtchinov, L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, P. Varanasi, V. Dana, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, and K. W. Jucks, “The HITRAN molecular spectroscopic database and Hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  2. J. Reid, J. Shewchun, B. K. Garside, and E. A. Ballik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978).
  3. B. F. Ventrudo and D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990).
  4. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
  5. D. M. Sonnenfroh and M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
  6. V. Weldon, J. O’Gorman, P. Phelan, and T. Tanbun-Ek, “Gas sensing with λ = 1.57 μm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
  7. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
  8. X. Zhu and D. T. Cassidy, “Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities,” Appl. Opt. 35, 4689–4693 (1996).
  9. M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple-quantum-well lasers,” IEEE J. Quantum Electron. 36, 978–983 (2000).
  10. V. K. Kononenko, I. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well laser diodes,” Spectrochim. Acta A 55, 2091–2096 (1999).
  11. B. Lee and C. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
  12. X. Zhu, D. T. Cassidy, M. J. Hamp, D. A. Thompson, B. J. Robinson, Q. C. Zhao, and M. Davies, “1.4-μm InGaAsP–InP strained multiple-quantum-well laser for broad-wavelength tunability,” IEEE Photon. Technol. Lett. 9, 1202–1204 (1997).
  13. T. F. Krauss, G. Hondromitros, B. Vogele, and R. M. De La Rue, “Broad spectral bandwidth semiconductor lasers,” Electron. Lett. 33, 1142–1143 (1997).
  14. H. S. Gingrich, D. R. Chummey, S. Z. Sun, S. D. Hersee, L. F. Lester, and S. R. J. Brueck, “Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells,” IEEE Photon. Technol. Lett. 9, 155–157 (1997).
  15. D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Pérot diode lasers,” J. Mod. Opt. 46, 1071–1078 (1999).
  16. T. D. Milster, “Miniature and micro-optics,” in Handbook of Optics Volume II: Devices, Measurements, and Properties, M. Bass, ed. (McGraw-Hill, New York, 1995).
  17. M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
  18. S. C. Woodworth, M. J. Hamp, and D. T. Cassidy, “Performance of a diffractive optical element external cavity diode laser,” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 60–62.
  19. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited