Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of the thermal offset of the Eppley precision spectral pyranometer

Not Accessible

Your library or personal account may give you access

Abstract

Eppley’s precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between +5 and -10 W m-2. We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net–IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach -15 W m-2 under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net–IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (±1 W m-2). The offset computed from net–IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements

R. Philipona, C. Fröhlich, and Ch. Betz
Appl. Opt. 34(9) 1598-1605 (1995)

Laboratory calibration of pyrgeometers with known spectral responsivities

Julian Gröbner and Alexander Los
Appl. Opt. 46(30) 7419-7425 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved