OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 4 — Feb. 1, 2001
  • pp: 544–552

Measurement of Telescope Aberrations Through Atmospheric Turbulence by use of Phase Diversity

Naoshi Baba and Kohta Mutoh  »View Author Affiliations


Applied Optics, Vol. 40, Issue 4, pp. 544-552 (2001)
http://dx.doi.org/10.1364/AO.40.000544


View Full Text Article

Acrobat PDF (2401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We conduct computer simulations of the reconstruction of a wave front at a telescope pupil with the phase-diversity method. An instantaneous wave front is reconstructed from focused and defocused specklegrams of a point star. In the wave-front reconstruction we do not fit the wave front to Zernike polynomials but retrieve the phase with a phase-unwrapping procedure. Averaging over many atmospherically perturbed wave fronts leads to the residual phase error, namely, the aberration of the telescope. The scintillation effect, nonuniformity of amplitude on a telescope pupil, is also discussed.

© 2001 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.6610) Coherence and statistical optics : Stellar speckle interferometry
(100.5070) Image processing : Phase retrieval
(110.6770) Imaging systems : Telescopes
(350.1260) Other areas of optics : Astronomical optics

Citation
Naoshi Baba and Kohta Mutoh, "Measurement of Telescope Aberrations Through Atmospheric Turbulence by use of Phase Diversity," Appl. Opt. 40, 544-552 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-4-544


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. K. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).
  2. L. Noethe, F. Franza, P. Giordano, R. N. Wilson, O. Citterio, G. Conti, and E. Mattaini, “Active optics II. Results of an experiment with a thin 1 m test mirror,” J. Mod. Opt. 35, 1427–1457 (1988).
  3. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993).
  4. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982).
  5. M. G. Loefdahl and G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  6. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, and C. U. Keller, “Evaluation of phase-diverse techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
  7. M. G. Löfdahl, R. L. Kendrick, A. Harwit, K. E. Mitchell, A. L. Duncan, J. H. Seldin, R. G. Paxman, and D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II Telescope,” in Space Telescopes and Instruments V, P. V. Bely and J. B. Breckinridge, eds., Proc. SPIE 3356, 1190–1201 (1998).
  8. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  9. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992).
  10. N. Baba, H. Tomita, and N. Miura, “Iterative reconstruction method in phase-diversity imaging,” Appl. Opt. 33, 4428–4433 (1994).
  11. J. Strand and T. Taxt, “Performance evaluation of two-dimensional phase unwrapping algorithms,” Appl. Opt. 38, 4333–4344 (1999).
  12. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
  13. D. C. Ghiglia and M. D. Pratt, Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
  14. W. H. Press, B. D. Flanmery, S. A. Tenkolsky, and W. T. Vallerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986).
  15. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Urbach, ed., Proc. SPIE 74, 225–233 (1976).
  16. L. Meynadier, V. Michan, M.-T. Velluet, J.-M. Conan, L. M. Mugnier, and G. Rousset, “Noise propagation in wave-front sensing with phase diversity,” Appl. Opt. 38, 4967–4979 (1999).
  17. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19.
  18. R. Avila, J. Vermin, and E. Masciadri, “Whole atmospheric-turbulence profiling with generalized SCIDAR,” Appl. Opt. 36, 7898–7905 (1997).
  19. R. A. Johnston and R. G. Lane, “Modeling scintillation from a periodic Kolmogorov phase screen,” Appl. Opt. 39, 4761–4769 (2000).
  20. N. Baba and E. Kenmochi, “Wavefront retrieval with use of defocused PSF data,” Optik 84, 70–72 (1990).
  21. D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramer–Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999).
  22. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited