Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

X-ray telescope onboard Astro-E: optical design and fabrication of thin foil mirrors

Not Accessible

Your library or personal account may give you access

Abstract

X-ray telescopes (XRT’s) of nested thin foil mirrors are developed for Astro-E, the fifth Japanese x-ray astronomy satellite. Although the launch was not successful, the design concept, fabrication, and alignment procedure are summarized. The main purpose of the Astro-E XRT is to collect hard x rays up to 10 keV with high efficiency and to provide medium spatial resolution in limited weight and volume. Compared with the previous mission, Advanced Satellite for Cosmology and Astrophysics (ASCA), a slightly longer focal length of 4.5–4.75 m and a larger diameter of 40 cm yields an effective area of 1750 cm2 at 8 keV with five telescopes. The image quality is also improved to 2-arc min half-power diameter by introduction of a replication process. Platinum is used instead of gold for the reflectors of one of the five telescopes to enhance the high-energy response. The fabrication and alignment procedure is also summarized. Several methods for improvement are suggested for the reflight Astro-E II mission and for other future missions. Preflight calibration results will be described in a forthcoming second paper, and a detailed study of images will be presented in a third paper.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
X-ray telescope onboard Astro-E. II. Ground-based x-ray characterization

Ryo Shibata, Manabu Ishida, Hideyo Kunieda, Takao Endo, Hirohiko Honda, Kazutami Misaki, Jun’ichi Ishida, Kohsuke Imamura, Yasuhiro Hidaka, Masamichi Maeda, Yuzuru Tawara, Yasushi Ogasaka, Akihiro Furuzawa, Manabu Watanabe, Yuichi Terashima, Tsutomu Yoshioka, Takashi Okajima, Koujun Yamashita, Peter J. Serlemitsos, Yang Soong, and Kai-Wing Chan
Appl. Opt. 40(22) 3762-3783 (2001)

X-ray telescope onboard Astro-E. III. Guidelines to performance improvements and optimization of the ray-tracing simulator

Kazutami Misaki, Yasuhiro Hidaka, Manabu Ishida, Ryo Shibata, Akihiro Furuzawa, Yoshito Haba, Kei Itoh, Hideyuki Mori, and Hideyo Kunieda
Appl. Opt. 44(6) 916-940 (2005)

Hard x-ray telescopes to be onboard ASTRO-H

Hisamitsu Awaki, Hideyo Kunieda, Manabu Ishida, Hironori Matsumoto, Yasunori Babazaki, Tadatsugu Demoto, Akihiro Furuzawa, Yoshito Haba, Takayuki Hayashi, Ryo Iizuka, Kazunori Ishibashi, Naoki Ishida, Masayuki Itoh, Toshihiro Iwase, Tatsuro Kosaka, Daichi Kurihara, Yuuji Kuroda, Yoshitomo Maeda, Yoshifumi Meshino, Ikuyuki Mitsuishi, Yuusuke Miyata, Takuya Miyazawa, Hideyuki Mori, Housei Nagano, Yoshiharu Namba, Yasushi Ogasaka, Keiji Ogi, Takashi Okajima, Shigetaka Saji, Fumiya Shimasaki, et al.
Appl. Opt. 53(32) 7664-7676 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved