OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 4 — Feb. 1, 2001
  • pp: 570–582

Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities

Steve Blair and Yan Chen  »View Author Affiliations


Applied Optics, Vol. 40, Issue 4, pp. 570-582 (2001)
http://dx.doi.org/10.1364/AO.40.000570


View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the artificial resonances of dielectric optical cavities can be used to enhance the detection sensitivity of evanescent-wave optical fluorescence biosensors to the binding of a labeled analyte with a biospecific monolayer. Resonant coupling of power into the optical cavity allows for efficient use of the long photon lifetimes (or equivalently, the high internal power) of the high-Q whispering gallery modes to increase the probability of photon absorption into the fluorophore, thereby enhancing fluorescence emission. A method to compare the intrinsic sensitivity between resonant cavity and waveguide formats is also developed. Using realistic estimates for dielectric cylindrical cavities in both bulk and integrated configurations, we can expect sensitivity enhancement by at least an order of magnitude over standard waveguide evanescent sensors of equivalent sensing geometries. In addition, the required sample volume can be reduced significantly. The cylindrical cavity format is compatible with a large variety of sensing modalities such as immunoassay and molecular diagnostic assay.

© 2001 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(230.5750) Optical devices : Resonators

History
Original Manuscript: March 29, 2000
Revised Manuscript: June 26, 2000
Published: February 1, 2001

Citation
Steve Blair and Yan Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-4-570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990). [CrossRef] [PubMed]
  2. B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).
  3. S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994). [PubMed]
  4. A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996). [CrossRef] [PubMed]
  5. I. E. Squillante, “Applications of fiber-optic evanescent wave spectroscopy,” Drug Dev. Ind. Pharm. 24, 1163–1175 (1998). [CrossRef]
  6. A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990). [CrossRef]
  7. Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991). [CrossRef] [PubMed]
  8. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996). [CrossRef] [PubMed]
  9. D. S. Walker, W. M. Reichert, C. J. Berry, “Corning 7059, silicon oxynitride, and silicon dioxide thin film integrated optical waveguide: in search of low loss, nonfluorescent, reusable glass waveguides,” Appl. Spectrosc. 46, 1437–1441 (1992). [CrossRef]
  10. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995). [CrossRef]
  11. B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983). [CrossRef]
  12. N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  13. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991). [CrossRef] [PubMed]
  14. E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983). [CrossRef]
  15. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981). [CrossRef]
  16. C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961). [CrossRef]
  17. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980). [CrossRef]
  18. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991). [CrossRef] [PubMed]
  19. H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992). [CrossRef] [PubMed]
  20. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910). [CrossRef]
  21. W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991). [CrossRef]
  22. M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993). [CrossRef]
  23. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  24. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  25. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997). [CrossRef]
  26. R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).
  27. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993). [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, UK, 1997).
  29. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  30. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992). [CrossRef] [PubMed]
  31. R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  32. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  33. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987). [CrossRef]
  34. H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989). [CrossRef]
  35. M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994). [CrossRef]
  36. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996). [CrossRef] [PubMed]
  37. S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986). [CrossRef]
  38. D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).
  39. A. Serpengüzel, S. Arnold, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995). [CrossRef] [PubMed]
  40. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995). [CrossRef] [PubMed]
  41. S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387. [CrossRef]
  42. D. L. Lee, Electromagnetic Principals of Integrated Optics (Wiley, New York, 1986).
  43. B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef] [PubMed]
  44. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]
  45. M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994). [CrossRef]
  46. N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995). [CrossRef]
  47. Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996). [CrossRef]
  48. S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997). [CrossRef]
  49. B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  50. S.-W. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993). [CrossRef] [PubMed]
  51. G. R. Quigley, R. D. Harris, J. S. Wilkenson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999). [CrossRef]
  52. P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991). [CrossRef] [PubMed]
  53. J. C. Knight, H. S. T. Driver, G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations,” J. Opt. Soc. Am. B 11, 2046–2053 (1994). [CrossRef]
  54. J. Yu, K. Giulietti, F. Sourgen, A. R. J. P. Wolf, M. Ferriol, G. Foulon, C. G. M. T. Cohen-Adad, G. Boulon, “Second-harmonic generation in a microradius LiNbO3 cylinder with a quasi-elliptical cross section,” Opt. Lett. 24, 394–396 (1999). [CrossRef]
  55. R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988). [CrossRef]
  56. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  57. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995). [CrossRef] [PubMed]
  58. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997). [CrossRef]
  59. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997). [CrossRef] [PubMed]
  60. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998). [CrossRef]
  61. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997). [CrossRef]
  62. B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996). [CrossRef]
  63. A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998). [CrossRef]
  64. R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited