OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 5 — Feb. 10, 2001
  • pp: 607–613

Number of Phase Levels of a Talbot Array Illuminator

Changhe Zhou, Huaisheng Wang, Shuai Zhao, Peng Xi, and Liren Liu  »View Author Affiliations


Applied Optics, Vol. 40, Issue 5, pp. 607-613 (2001)
http://dx.doi.org/10.1364/AO.40.000607


View Full Text Article

Acrobat PDF (106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The number of phase levels of a Talbot array illuminator is an important factor in the estimation of practical fabrication complexity and cost. We show that the number (<i>L</i>) of phase levels of a Talbot array illuminator has a simple relationship to the prime number. When there is an alternative π-phase modulation in the output array, the relations are similar.

© 2001 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects

Citation
Changhe Zhou, Huaisheng Wang, Shuai Zhao, Peng Xi, and Liren Liu, "Number of Phase Levels of a Talbot Array Illuminator," Appl. Opt. 40, 607-613 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-5-607


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttgart) 79, 41–45 (1988).
  2. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
  3. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional Talbot planes,” Opt. Lett. 15, 288–290 (1990).
  4. L. Liu, “Lau cavity and phase locking of laser arrays,” Opt. Lett. 14, 1312–1314 (1989).
  5. V. Arrizón and J. Ojeda-Castañeda, “Multilevel phase gratings for array illuminators,” Appl. Opt. 33, 5925–5931 (1994).
  6. P. Szwaykowski and V. Arrizón, “Talbot array illuminator with multilevel phase gratings,” Appl. Opt. 32, 1109–1114 (1993).
  7. V. Arrizon and J. Ojeda-Castañeda, “Fresnel diffraction of substructured gratings: matrix description,” Opt. Lett. 20, 118–120 (1995).
  8. M. Testorf and J. Ojeda-Castañeda, “Fractional Talbot effect: analysis in phase space,” J. Opt. Soc. Am A 13, 119–125 (1996).
  9. J. P. Guigay, “On Fresnel diffraction by one-dimensional periodic objects with application to structure determination of phase objects,” Opt. Acta 18, 677–682 (1971).
  10. C. Zhou and L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115, 40–44 (1995).
  11. C. Zhou, S. Stankovic, and T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).
  12. V. Arrizón and E. López-Olazagasti, “Binary phase grating for array generation at 1/16 of Talbot length,” J. Opt. Soc. Am. A 12, 801–804 (1995).
  13. W. Klaus, Y. Arimoto, and K. Kodate, “Talbot array illuminators providing spatial intensity and phase modulation,” J. Opt. Soc. Am. A 14, 1092–1102 (1997).
  14. W. Klaus, Y. Arimoto, and K. Kodate, “High-performance Talbot array illuminators,” Appl. Opt. 37, 4357–4365 (1998).
  15. T. J. Suleski, “Generation of Lohmann images from binary-phase Talbot array illuminators,” Appl. Opt. 36, 4686–4691 (1997).
  16. J. R. Leger and G. Mowry, “External diode-laser array cavity with mode-selecting mirror,” Appl. Phy. Lett. 63, 2884–2886 (1993).
  17. J. R. Leger, G. Mowry, and D. Chen, “Model analysis of Talbot cavity,” Appl. Phy. Lett. 64, 2937–2939 (1994).
  18. M. Testorf, V. Arrizón, and J. Ojeda-Castañeda, “Numerical optimization of phase-only elements based on the fractional Talbot effect,” J. Opt. Soc. Am. A 16, 97–105 (1999).
  19. H. Wang, C. Zhou, and L. Liu, “Simple Fresnel diffraction equations of a grating for Talbot array illumination,” Opt. Commun. 173, 17–22 (2000).
  20. S. Nowak, C. Kurtsiefer, T. Pfau, and C. David, “High-order Talbot fringes for atomic matter waves,” Opt. Lett. 22, 1430–1432 (1997).
  21. C. Zhou, S. Stankovic, C. Denz, and T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).
  22. H. Wang, C. Zhou, L. Jilang, and L. Liu, “Talbot effect of a grating under ultrashort pulsed-laser illumination,” Microwave Opt. Technol. Lett. 25, 184–187 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited