OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 5 — Feb. 10, 2001
  • pp: 652–655

Noise reduction in phase maps with 2π phase jumps by means of the heat equation

César Daniel Perciante  »View Author Affiliations


Applied Optics, Vol. 40, Issue 5, pp. 652-655 (2001)
http://dx.doi.org/10.1364/AO.40.000652


View Full Text Article

Enhanced HTML    Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new algorithm for filtering noise in phase maps that contain 2π discontinuities is presented. The algorithm is based on a thermal model that uses the heat equation to perform low-pass filtering. A similar approach is used in image processing for filtering noise, but the edges are generally distorted because of their inherent high frequencies. A solution that consists in redefining the spatial derivatives is proposed here. Simulation results are presented and discussed.

© 2001 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(350.5030) Other areas of optics : Phase

History
Original Manuscript: May 25, 2000
Revised Manuscript: October 2, 2000
Published: February 10, 2001

Citation
César Daniel Perciante, "Noise reduction in phase maps with 2π phase jumps by means of the heat equation," Appl. Opt. 40, 652-655 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-5-652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Frins, W. Dultz, J. A. Ferrari, “Polarization-shifting method for step interferometry,” Pure Appl. Opt. 7, 53–60 (1998). [CrossRef]
  2. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  3. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  4. J. L. Marroquin, M. Tapia, R. Rodriguez-Vera, M. Servin, “Parallel algorithms for phase unwrapping based on Markov random fields models,” J. Opt. Soc. Am. A 12, 2578–2585 (1995). [CrossRef]
  5. H. A. Zebker, Y.-P. Lu, “Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms,” J. Opt. Soc. Am. A 15, 586–598 (1998). [CrossRef]
  6. G. Páez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997). [CrossRef]
  7. G. Fornaro, G. Franceschetti, R. Lanari, “Interferometric SAR phase unwrapping using Green’s formulation,” IEEE Trans. Geosci. Remote Sens. 34, 720–727 (1996). [CrossRef]
  8. A. Collaro, G. Franceschetti, F. Palmieri, M. S. Ferreiro, “Phase unwrapping by means of genetic algorithms,” J. Opt. Soc. Am. A 15, 407–418 (1997). [CrossRef]
  9. L. Guerriero, G. Nico, G. Pasquariello, S. Stramaglia, “New regularization scheme for phase unwrapping,” Appl. Opt. 37, 3053–3058 (1998). [CrossRef]
  10. R. Seara, A. A. Gonçalves, P. B. Uliana, “Filtering algorithm for noise reduction in phase-map images with 2π phase jumps,” Appl. Opt. 37, 2046–1050 (1998). [CrossRef]
  11. B. M. Ter, Haar Romeny, ed., Geometry-Driven Diffusion in Computer Vision (Kluwer Scientific, Dordrecht, The Netherlands, 1994).
  12. F. P. Incropera, D. P. De Witt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1990), Chap. 5.
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1996), Chap. 19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited