OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 748–756

Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame

Wolfgang G. Bessler, Frank Hildenbrand, and Christof Schulz  »View Author Affiliations

Applied Optics, Vol. 40, Issue 6, pp. 748-756 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional temperature fields are measured in lean and sooting flames by means of two-color laser-induced fluorescence (LIF) imaging that uses seeded NO. Vibrational thermometry is performed by the probing of different vibrational ground-state levels. Spectral properties of the excited transitions within the A2Σ+X2Π system are well known from previous studies. The energy difference of 1974 cm-1 between the (0,0)Q1 + P21(33.5) and the (0,2)O12(5.5) lines offers great sensitivity in the temperature range that is relevant for combustion processes. Excitation is possible by use of a tunable KrF excimer laser on its fundamental (248-nm) and Raman shifted (in H2, 225-nm) wavelengths. An excitation scheme for instantaneous two-line measurements by use of a single laser is developed. The possibility of single-shot measurements is discussed.

© 2001 Optical Society of America

OCIS Codes
(140.2180) Lasers and laser optics : Excimer lasers
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: May 17, 2000
Revised Manuscript: August 21, 2000
Published: February 20, 2001

Wolfgang G. Bessler, Frank Hildenbrand, and Christof Schulz, "Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame," Appl. Opt. 40, 748-756 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Gross, R. L. McKenzie, “Single-pulse gas thermometry at low temperatures using two-photon laser-induced fluorescence in NO–N2 mixtures,” Opt. Lett. 8, 368–370 (1983). [CrossRef] [PubMed]
  2. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  3. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef] [PubMed]
  4. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981). [CrossRef] [PubMed]
  5. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ*(ν = 0) OH,” Appl. Opt. 25, 4086–4095 (1986). [CrossRef]
  6. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993). [CrossRef] [PubMed]
  7. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998). [CrossRef]
  8. R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
  9. S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000). [CrossRef]
  10. S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.
  11. G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).
  12. C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).
  13. A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992). [CrossRef]
  14. J. M. Seitzmann, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993). [CrossRef]
  15. M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999). [CrossRef]
  16. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987). [CrossRef] [PubMed]
  17. A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).
  18. T. Ni-Imi, T. Fujimoto, N. Shimizu, “Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence,” Opt. Lett. 15, 918–920 (1990). [CrossRef] [PubMed]
  19. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996). [CrossRef]
  20. M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997). [CrossRef] [PubMed]
  21. S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).
  22. H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976). [CrossRef]
  23. G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979). [CrossRef]
  24. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982). [CrossRef]
  25. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000). [CrossRef]
  26. F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).
  27. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997). [CrossRef] [PubMed]
  28. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999). [CrossRef]
  29. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
  30. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).
  31. S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982). [CrossRef]
  32. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd ed. (Krieger, Malabar, Fla., 1950).
  33. W. Bessler, C. Schulz are preparing a manuscript entitled “Foreign gas effects on the hydrogen Raman shift frequency” to be submitted to Applied Optics.
  34. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  35. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  36. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994). [CrossRef]
  37. M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994). [CrossRef]
  38. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  39. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995). [CrossRef]
  40. P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968). [CrossRef]
  41. L. D. Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. v.d. Bergh, “Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997). [CrossRef] [PubMed]
  42. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998). [CrossRef]
  43. F. Hildenbrand, Physikalisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 253, 69124 Heidelberg, Germany (personal communication, 31January2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited