OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 783–793

Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory

Pawel Kluczynski, Åsa M. Lindberg, and Ove Axner  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 783-793 (2001)
http://dx.doi.org/10.1364/AO.40.000783


View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Various types of background signals appear when wavelength-modulated (WM) diode-laser light is frequency doubled. We present a theoretical analysis of such background signals in terms of a previously derived formalism for WM spectrometry that is based on a Fourier series. Explicit expressions for various nf harmonics of the background signals are derived. The analysis shows that 2f detection will be plagued by significant background signals when frequency-doubled WM diode-laser light is used. It also demonstrates that 4f and 6f detection will experience background signals but not, however, to the same extent as 2f detection. The analysis illustrates clearly how the various nf harmonics of the background signals depend on entities such as modulation amplitude, associated intensity modulation, dispersion of the frequency-doubling material, laser power, and detuning. The background signals can take both positive and negative values, depending on the relation between these entities. Guidelines for how to minimize these background signals are given.

© 2001 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: May 18, 2000
Revised Manuscript: September 14, 2000
Published: February 20, 2001

Citation
Pawel Kluczynski, Åsa M. Lindberg, and Ove Axner, "Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory," Appl. Opt. 40, 783-793 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977). [CrossRef] [PubMed]
  2. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  3. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef] [PubMed]
  4. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  5. A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993). [CrossRef]
  6. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  7. C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique.” J. Anal. At. Spectrom. 8, 1103–1107 (1993). [CrossRef]
  8. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency-modulation and wavelength-modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  9. H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994). [CrossRef]
  10. A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography.” J. Anal. At. Spectrom. 10, 563–567 (1995). [CrossRef]
  11. C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995). [CrossRef]
  12. H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(III)/Cr(VI) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995). [CrossRef]
  13. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996). [CrossRef]
  14. P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997). [CrossRef]
  15. N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998). [CrossRef]
  16. K. A. Peterson, D. B. Oh, “High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet source.” Opt. Lett. 24, 667–669 (1999). [CrossRef]
  17. V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997). [CrossRef]
  18. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982). [CrossRef]
  19. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  20. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988). [CrossRef] [PubMed]
  21. P. V. Cvijin, W. K. Wells, D. A. Gilmore, J. Wu, D. M. Hunten, G. H. Atkinson, “Fringe pattern suppression in intracavity laser spectroscopy,” Appl. Opt. 31, 5779–5784 (1992). [CrossRef] [PubMed]
  22. T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993). [CrossRef]
  23. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985). [CrossRef]
  24. H. Ahlberg, S. Lundqvist, M. S. Schumate, U. Persson, “Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems,” Appl. Opt. 24, 3917–3923 (1985). [CrossRef]
  25. L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988). [CrossRef] [PubMed]
  26. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limit of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  27. N.-Y. Chou, G. W. Sachse, L.-G. Wang, T. F. Gallagher, “Optical fringe reduction technique for FM laser spectroscopy,” Appl. Opt. 28, 4973–4975 (1989). [CrossRef] [PubMed]
  28. T. Igushi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986). [CrossRef]
  29. N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997). [CrossRef]
  30. P. Kluczynski, Å. M. Lindberg, O. Axner, “Characterization of background signals in wavelength-modulation spectrometry in terms of a Fourier based theoretical formalism,” Appl. Opt. 40, 770–782 (2001). [CrossRef]
  31. X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997). [CrossRef]
  32. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  33. O. Axner, P. Kluczynski, Å. M. Lindberg, “A general noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quantum Spectrosc. Radiat. Transfer 68, 299–317 (2001). [CrossRef]
  34. P. Kluczynski, Å. M. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment,” Appl. Opt. 40, 794–805 (2001). [CrossRef]
  35. In deriving Eqs. (1) and (2), we made use of the fact that all odd transmission coefficients are zero, which follows from our choice of reference phase.
  36. Cζ is, in fact, frequency dependent but can, in the interval of frequency over which Eq. (15) takes any appreciable value, be considered constant.
  37. G. V. H. Wilson, “Modulation broadening of NMR and ESR lineshapes,” J. Appl. Phys. 34, 3276–3285 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited