OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 806–811

Mid-Infrared W Quantum-Well Lasers for Noncryogenic Continuous-Wave Operation

Christopher L. Felix, William W. Bewley, Igor Vurgaftman, Robert E. Bartolo, Donna W. Stokes, Jerry R. Meyer, Ming-Jey Yang, Hao Lee, Ray J. Menna, Ramon U. Martinelli, Dmitri Z. Garbuzov, John C. Connolly, Michael Maiorov, Alan R. Sugg, and Greg H. Olsen  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 806-811 (2001)
http://dx.doi.org/10.1364/AO.40.000806


View Full Text Article

Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review the recent progress of electrically injected and optically pumped mid-IR lasers based on antimonide quantum wells with the type II W configuration. W quantum-well diodes have achieved cw operation up to 195 K at λ = 3.25 μm. Optically pumped devices that employ the diamond pressure bond heat sink have reached 290 K at 3 μm and 210 K at 6 μm. Pulsed power conversion efficiencies of up to 7% at 220 K have been attained by use of an optical pumping injection cavity approach, in which an etalon cavity for the pump beam significantly enhances its absorptance. The angled-grating distributed-feedback configuration has been used to obtain near-diffraction-limited output for an optical pumping stripe width of 50 μm.

© 2001 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

Citation
Christopher L. Felix, William W. Bewley, Igor Vurgaftman, Robert E. Bartolo, Donna W. Stokes, Jerry R. Meyer, Ming-Jey Yang, Hao Lee, Ray J. Menna, Ramon U. Martinelli, Dmitri Z. Garbuzov, John C. Connolly, Michael Maiorov, Alan R. Sugg, and Greg H. Olsen, "Mid-Infrared W Quantum-Well Lasers for Noncryogenic Continuous-Wave Operation," Appl. Opt. 40, 806-811 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-806


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed feedback quantum cascade laser,” Opt. Lett. 23, 219–221 (1998).
  2. R. Rosman, A. Katzir, P. Norton, K.-H. Bachem, and H. M. Preier, “On the performance of selenium rich lead-salt heterostructure lasers with remote p-n junction,” IEEE J. Quantum Electron. 23, 94–102 (1987).
  3. Z. Feit, D. Kostyk, R. J. Woods, and P. Mak, “Molecular beam epitaxy-grown PbSnTe-PbEuSeTe buried heterostructure diode lasers,” IEEE Photon. Technol. Lett. 2, 860–862 (1990).
  4. Z. Shi, M. Tacke, A. Lambrecht, and H. Bottner, “Midinfrared lead salt multiple quantum well diode lasers with 282 K operation,” Appl. Phys. Lett. 66, 2537–2539 (1995).
  5. Z. Feit, M. McDonald, R. J. Woods, V. Archambault, and P. Mak, “Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers,” Appl. Phys. Lett. 68, 738–740 (1996).
  6. U. P. Schliessl and J. Rohr, “60 °C lead salt laser emission near 5-μm wavelength,” Infrared Phys. Technol. 40, 325–328 (1999).
  7. R. M. Williams, J. F. Kelly, J. S. Hartman, S. W. Sharpe, M. S. Taubman, J. L. Hall, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers,” Opt. Lett. 24, 1844–1846 (1999).
  8. F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and G. Scamarcio, “High-performance superlattice quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 792–807 (1999).
  9. C. Gmachl, A. M. Sergent, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Improved continuous wave operation of quantum cascade lasers with epitaxial-side heat-sinking,” IEEE Photon. Technol. Lett. 11, 1369–1371 (1999).
  10. H. K. Choi, G. W. Turner, M. J. Manfra, and M. K. Connors, “175 K cw operation of InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
  11. H. K. Choi and G. W. Turner, “InAsSb/InAlAsSb strained quantum well diode lasers emitting at 3.9 μm,” Appl. Phys. Lett. 67, 332–334 (1995).
  12. N. Menyuk, A. S. Pine, and A. Mooradian, “Efficient InSb laser with resonant longitudinal optical pumping,” IEEE J. Quantum Electron. 11, 477–481 (1975).
  13. J. R. Lindle, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, G. W. Turner, and H. K. Choi, “Auger lifetime in InAs, InAsSb, and InAsSb-InAlAsSb quantum wells,” Appl. Phys. Lett. 67, 3153–3155 (1995).
  14. C. H. Grein, P. M. Young, and H. Ehrenreich, “Theoretical performance of InAs/GaInSb superlattice based mid-wave infrared lasers,” J. Appl. Phys. 76, 1940–1942 (1994).
  15. M. E. Flatté, C. H. Grein, T. C. Hasenberg, S. A. Anson, D.-J. Jang, J. T. Olesberg, and T. F. Boggess, “Carrier recombination rates in narrow-gap InAs/Ga1−xInxSb-based superlattices,” Phys. Rev. B 59, 5745–5750 (1999).
  16. J. R. Meyer, C. L. Felix, W. W. Bewley, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M.-J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C.-H. Lin, S. S. Pei, and R. H. Miles, “Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells,” Appl. Phys. Lett. 73, 2857–2859 (1998).
  17. T. C. Hasenberg, R. H. Miles, A. R. Kost, and L. West, “Recent advances in Sb-based mid-IR lasers,” IEEE J. Quantum Electron. 33, 1403–1406 (1997).
  18. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett. 67, 757–759 (1995).
  19. J. I. Malin, J. R. Meyer, C. L. Felix, J. R. Lindle, L. Goldberg, C. A. Hoffman, F. J. Bartoli, C.-H. Lin, P. C. Chang, S. J. Murry, R. Q. Yang, and S.-S. Pei, “Type-II mid-IR quantum well lasers,” Appl. Phys. Lett. 68, 2976–2978 (1996).
  20. W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, E. H. Aifer, L. J. Olafsen, J. R. Meyer, M. J. Yang, B. V. Shanabrook, H. Lee, R. U. Martinelli, and A. R. Sugg, “High temperature continuous-wave 3–6.1 μm ‘W’ lasers with diamond-pressure-bond heat sinking,” Appl. Phys. Lett. 74, 1075–1077 (1999).
  21. W. W. Bewley, H. Lee, I. Vurgaftman, R. J. Menna, C. L. Felix, R. U. Martinelli, D. W. Stokes, D. Z. Garbuzov, J. R. Meyer, M. Maiorov, J. C. Connolly, A. R. Sugg, and G. H. Olsen, “Continuous-wave operation of λ = 3.25 μm broadened-waveguide W quantum well diode lasers up to T = 195 K,” Appl. Phys. Lett. 76, 256–258 (2000).
  22. J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, J. F. Pinto, C.-H. Lin, P. C. Chang, S. J. Murry, and S.-S. Pei, “Type-II mid-IR lasers operating above room temperature,” Electron. Lett. 32, 1593–1595 (1996).
  23. C. L. Felix, J. R. Meyer, I. Vurgaftman, C.-H. Lin, S. J. Murry, D. Zhang, and S.-S. Pei, “High-temperature 4.5 μm type-II quantum well laser with Auger suppression,” IEEE Photon. Technol. Lett. 9, 734–736 (1997).
  24. W. W. Bewley, C. L. Felix, E. H. Aifer, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, H. Lee, R. U. Martinelli, J. C. Connolly, A. R. Sugg, G. H. Olsen, M. J. Yang, B. R. Bennett, and B. V. Shanabrook, “Above-room-temperature optically-pumped mid-infrared W-lasers,” Appl. Phys. Lett. 73, 3833–3835 (1998).
  25. W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35, 1597–1601 (1999).
  26. C. L. Felix, W. W. Bewley, L. J. Olafsen, D. W. Stokes, E. H. Aifer, I. Vurgaftman, J. R. Meyer, and M. J. Yang, “Continuous-wave type-II “W” lasers emitting at λ = 5.3–7.1 μm,” IEEE Photon. Technol. Lett. 11, 964–966 (1999).
  27. C. L. Felix, W. W. Bewley, I. Vurgaftman, L. J. Olafsen, D. W. Stokes, J. R. Meyer, and M. J. Yang, “High-efficiency mid-IR “W” laser with optical pumping injection cavity,” Appl. Phys. Lett. 75, 2876–2878 (1999).
  28. W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, J. R. Meyer, H. Lee, and R. U. Martinelli, “Optical-pumping injection cavity (OPIC) mid-IR W lasers with high efficiency and low loss,” IEEE Photon. Technol. Lett. 12, 477–479 (2000).
  29. B. Pezeshki, M. Hagberg, M. Zelinski, S. D. DeMars, E. Kolev, and R. J. Lang, “400-mW single frequency 660-nm semiconductor laser,” IEEE Photon. Technol. Lett. 11, 791–793 (1999).
  30. R. J. Lang, K. Dzurko, A. A. Hardy, S. DeMars, A. Schoenfelder, and D. F. Welch, “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
  31. R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett. 76, 3164–3166 (2000).
  32. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77–83 (1995).
  33. B. H. Yang, D. Zhang, R. Q. Yang, C.-H. Lin, S. J. Murry, and S. S. Pei, “Mid-IR interband cascade lasers with quantum efficiencies >200%,” Appl. Phys. Lett. 72, 2220–2222 (1998).
  34. R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High-power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35, 1254–1255 (1999).
  35. L. J. Olafsen, E. H. Aifer, I. Vurgaftman, W. W. Bewley, C. L. Felix, J. R. Meyer, D. Zhang, C.-H. Lin, and S. S. Pei, “Near-room-temperature mid-IR interband cascade laser,” Appl. Phys. Lett. 72, 2370–2372 (1998).
  36. H. Lee, L. J. Olafsen, R. J. Menna, W. W. Bewley, R. U. Martinelli, I. Vurgaftman, D. Z. Garbuzov, C. L. Felix, M. Maiorov, J. R. Meyer, J. C. Connolly, A. R. Sugg, and G. H. Olsen, “Room-temperature type-II W quantum well diode laser with broadened waveguide emitting at λ = 3.30 μm,” Electron. Lett. 35, 1743–1745 (1999).
  37. D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3–2.7 μm room temperature cw operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett. 11, 794–796 (1999).
  38. H. K. Choi, G. W. Turner, and M. J. Manfra, “High CW power (>200 mW/facet) at 3.4 μm from InAsSb/InAlAsSb strained quantum well diode lasers,” Electron. Lett. 32, 1296–1297 (1996).
  39. B. Lane, S. Tong, J. Diaz, Z. Wu, and M. Razeghi, “High power InAsSb/InAsSbP electrical injection laser diodes emitting between 3 and 5 μm,” Mater. Sci. Eng. B 74, 52–55 (2000).
  40. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited