OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 829–839

Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in semiconductor gases

David Christian Hovde, Joseph T. Hodges, Gregory E. Scace, and Joel A. Silver  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 829-839 (2001)
http://dx.doi.org/10.1364/AO.40.000829


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Water vapor is measured by use of a near-infrared diode laser and wavelength-modulation absorption spectroscopy. Humidity levels as low as 5 nmol/mol [1 nmol/mol = 1 ppb (1 ppb equals 1 part in 109)] of water vapor in air are measured with a sensitivity of better than 0.2 nmol/mol (3σ). The sensitivity, linearity, and stability of the technique are determined in experiments conducted at the National Institute of Standards and Technology, Gaithersburg, Maryland, by use of the low frost-point humidity generator over the range from 5 nmol/mol to 2.5 µmol/mol of water vapor in air. The pressure-broadening coefficients for water broadened by helium [0.0199(6) cm-1 atm-1 HWHM] and by hydrogen chloride [0.268(6) cm-1 atm-1 HWHM] are reported for the water line at 1392.5 nm.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: June 1, 2000
Revised Manuscript: August 17, 2000
Published: February 20, 2001

Citation
David Christian Hovde, Joseph T. Hodges, Gregory E. Scace, and Joel A. Silver, "Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in semiconductor gases," Appl. Opt. 40, 829-839 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).
  2. J. J. McAndrew, D. Boucheron, “Moisture analysis in process gas streams,” Solid State Technol. 35, 55–60 (1992).
  3. S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995). [CrossRef]
  4. S. Ketkar, “Atmospheric pressure ionization mass spectrometry calibration and measurement of sub ppb levels of water in bulk gases,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 22–23; see also Ref. 3.
  5. B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995). [CrossRef]
  6. G. Atkinson, “High sensitivity water detection: intracavity laser spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 44–45; see also Ref. 3.
  7. B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997). [CrossRef]
  8. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  9. J. A. Mucha, “Standard addition technique for quantitative trace gas analysis using derivative infrared diode laser spectroscopy,” Appl. Spectrosc. 36, 393–400 (1982). [CrossRef]
  10. R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994). [CrossRef]
  11. C. Hovde, J. A. Silver, “High sensitivity measurement of water vapor by tunable diode laser absorption spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 47–48; see also Ref. 3.
  12. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  13. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  14. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  15. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993). [CrossRef]
  16. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  17. The assignment listed by HITRAN (Ref. 37) for this transition is (ν1ν2ν3)JKa,Kc = (0,0,0)30,3 → (1,0,1)20,2.
  18. S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998). [CrossRef] [PubMed]
  19. S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999). [CrossRef]
  20. J.-M. Girard, P. Mauvais, “PPB-level hygrometry in nitrogen and ESG’s using tunable diode laser spectroscopy,” in Proceedings of the International Symposium on Semiconductor Manufacturing ’96 (Institute of Electrical and Electronic Engineers, New York, 1996), pp. 325–328.
  21. R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993). [CrossRef]
  22. A. Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents by employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993). [CrossRef] [PubMed]
  23. D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  24. J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981). [CrossRef] [PubMed]
  25. Manufacturers and product names are given solely for completeness. These specific citations neither constitute an endorsement of the products nor imply that similar products from other companies would be less suitable.
  26. A. Nadezhdinskii, “Diode laser frequency tuning,” Spectrochim. Acta Part A 52, 959–965 (1996). [CrossRef]
  27. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982). [CrossRef]
  28. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988). [CrossRef] [PubMed]
  29. J. A. Silver, A. C. Stanton, “Laser absorption detection enhancing method and apparatus,” U.S. patent4,934,816 (19June1990).
  30. G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.
  31. A. Wexler, “Vapor pressure formulation for ice,” J. Res. Natl. Bur. Stand. Part A 81, 5–19 (1977). [CrossRef]
  32. R. W. Hyland, “A correlation for the second interaction virial coefficients and enhancement factors for moist air,” J. Res. Natl. Bur. Stand. Part A 79, 551–560 (1975). [CrossRef]
  33. N. Goldstein, S. Aldergolden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  34. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  35. A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978). [CrossRef]
  36. V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996). [CrossRef] [PubMed]
  37. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  38. The Allan variance calculation was made by use of the LabView computer program SRAV.VI, written by D. Moschella and downloaded from ftp://ftp.pica.army.mil/pub/labview/vi/.
  39. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996). [CrossRef]
  40. R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996). [CrossRef]
  41. V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995). [CrossRef]
  42. J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).
  43. D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).
  44. T. Iguchi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited