OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 846–858

Fast chemical sensor for eddy-correlation measurements of methane emissions from rice paddy fields

Peter Werle and Robert Kormann  »View Author Affiliations

Applied Optics, Vol. 40, Issue 6, pp. 846-858 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-frequency-modulation spectrometer with a lead-salt diode laser operating in the ν4 band of CH4 at 7.8 µm was used as a fast chemical sensor to measure ambient methane concentrations of 2 ppmv (parts in 106 volume-mixing ratio) with a time resolution of 10 Hz for micrometeorological flux measurements. To assess the quality of the data on methane emissions from rice paddy fields, we compared eddy-correlation measurements with simultaneously recorded emission data from the state-of-the-art closed-chamber technique and showed that the closed-chamber measurements were 60%–90% higher than were the eddy-correlation measurements during the campaign. This outcome demonstrates that diode-laser spectroscopy is a valuable tool for quality assurance.

© 2001 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3920) Atmospheric and oceanic optics : Meteorology
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.2020) Lasers and laser optics : Diode lasers
(300.6270) Spectroscopy : Spectroscopy, far infrared

Original Manuscript: May 17, 2000
Revised Manuscript: August 24, 2000
Published: February 20, 2001

Peter Werle and Robert Kormann, "Fast chemical sensor for eddy-correlation measurements of methane emissions from rice paddy fields," Appl. Opt. 40, 846-858 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Houghton, G. J. Jenkins, J. J. Ephraums, eds., Climate Change: the Intergovernmental Panel on Climate Change (IPCC) Scientific Assessment (Cambridge U. Press, New York, 1990).
  2. J. T. Houghton, B. A. Callander, S. K. Varney, eds., Climate Change 1992: The Supplemental Report to the IPCC Scientific Assessment (Cambridge U. Press, New York, 1992).
  3. H. Craig, C. C. Chou, “Methane: the record in polar ice cores,” Geophys. Res. Lett. 9, 1221–1224 (1982). [CrossRef]
  4. M. A. K. Kahlil, R. A. Rasmussen, “Atmospheric methane: recent global trends,” Environ. Sci. Technol. 24, 549–553 (1990). [CrossRef]
  5. H. Schütz, W. Seiler, R. Conrad, “Processes involved in formation and emission of CH4 in rice paddies,” Biogeochemistry 7, 33–53 (1989). [CrossRef]
  6. A. Mosier, D. Schimel, D. Valentine, K. Bronson, W. Parton, “Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands,” Nature 350, 330–332 (1991). [CrossRef]
  7. World Rice Statistics 1990 [International Rice Research Institute (IRRI), P.O. Box 933, Manila, Philippines, 1991].
  8. B. V. Braatz, K. B. Hogan, “Sustainable rice productivity and CH4 reduction plan” (U.S. Environmental Protection Agency, Washington, D.C., 1991).
  9. T. E. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 257(9), 7–14 (1989).
  10. J. Lelieveld, P. J. Crutzen, F. J. Dentener, “Changing concentration, lifetime, and climate forcing of atmospheric methane,” Tellus Part B 50, 128–132 (1998). [CrossRef]
  11. R. J. Cicerone, J. D. Shetter, “Sources of atmospheric CH4: measurements in rice paddies and a discussion,” J. Geophys. Res. 86, 7203–7209 (1981). [CrossRef]
  12. W. Seiler, A. Holzapfel-Pschorn, R. Conrad, D. Scharffe, “CH4 emission from rice paddies,” J. Atmos. Chem. 1, 241–268 (1984). [CrossRef]
  13. A. Holzapfel-Pschorn, W. Seiler, “CH4 emission during a cultivation period from an Italian rice paddy,” J. Geophys. Res. 91, 11803–11814 (1986). [CrossRef]
  14. H. Schütz, A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, W. Seiler, “A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on CH4 emission rates from an Italian rice paddy,” J. Geophys. Res. 94, 16405–16416 (1989). [CrossRef]
  15. M. A. K. Kahlil, R. A. Rasmussen, M.-J. Wang, L. Ren, “Methane emissions from rice fields in China,” Environ. Sci. Technol. 25, 979–981 (1991). [CrossRef]
  16. D. Beever, O. van Cleemput, J. W. Czerkawski, M. Gibbs, K. Johnson, R. Leng, A. Mosier, W. H. Patric, J. Rowe, K. A. Smith, J. Wallace, R. Wassmann, “Manual on measurement of methane and nitrous oxide emissions from agriculture,” (International Atomic Energy Agency, Vienna, Austria, 1992).
  17. H. P. Patrick, K. Minami, R. L. Suss, “Report of the External Advisory Committee on an interregional research program on methane emission from rice fields” (International Rice Research Institute, Los Banos, Philippines, 1994).
  18. D. H. Lenschow, B. B. Hicks, eds., Global Tropospheric Chemistry: Chemical Fluxes in the Global Atmosphere (National Center for Atmospheric Research, Boulder, Co., 1989).
  19. I. J. Simpson, G. W. Thurtell, G. E. Kidd, M. Lin, T. H. Demertriades-Shah, I. D. Flitcroft, E. T. Kanemasu, D. Nie, K. F. Bronson, H. U. Neue, “Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines,” J. Geophys. Res. 100, 7283–7290 (1995). [CrossRef]
  20. S. M. Fan, S. C. Wofsy, P. S. Bakwin, D. J. Jacob, S. M. Anderson, P. L. Kebabian, J. B. McManus, C. E. Kolb, D. R. Fitzjerald, “Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra,” J. Geophys. Res. 97, 16627–16643 (1992). [CrossRef]
  21. D. Fowler, K. J. Hargreaves, U. Skiba, R. Milne, M. S. Zahniser, J. B. Moncrieff, I. J. Beverland, M. W. Gallagher, “Measurements of CH4 and N2O fluxes at the landscape scale using micrometeorological methods,” Philos. Trans. R. Soc. London 351, 363–370 (1995).
  22. R. Kormann, H. Müller, P. Werle, “Eddy flux measurements of methane over the fen Murnauer Moos, 11°11′E, 47°39′N, using a fast tunable diode laser spectrometer,” Atmos. Environ. (to be published).
  23. D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1995). [CrossRef]
  24. S. B. Verma, F. G. Ullman, D. Billesbach, R. J. Clement, J. Kim, E. S. Verry, “Eddy correlation measurements of methane flux in a northern peatland ecosystem,” Boundary-Layer Meteorol. 58, 289–305 (1992). [CrossRef]
  25. G. C. Edwards, H. H. Neumann, G. den Hartog, G. W. Thurtell, G. Kidd, “Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the northern wetlands study (NOWES),” J. Geophys. Res. 99, 1511–1517 (1994). [CrossRef]
  26. P. Werle, A. Popov, “Application of antimonide lasers for gas sensing in the 3–4-µm range,” Appl. Opt. 38, 1494–1501 (1999). [CrossRef]
  27. See, for example, P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998), and 183 references therein.
  28. P. Werle, B. Scheumann, J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33, 3093–3108 (1994). [CrossRef]
  29. E. Othaki, T. Matsui, “Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor,” Boundary-Layer Meteorol. 24, 109–114 (1982). [CrossRef]
  30. C. J. Moore, “Frequency response corrections for eddy correlation systems,” Boundary-Layer Meteorol. 37, 17–32 (1986). [CrossRef]
  31. E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for chemistry effects due to heat and water vapour transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980). [CrossRef]
  32. R. T. McMillen, “An eddy correlation technique with extended applicability to nonsimple terrain,” Boundary-Layer Meteorol. 43, 231–239 (1988). [CrossRef]
  33. T. Foken, R. Dlugi, G. Kramm, “On the determination of dry deposition and emission of gaseous compounds at the biosphere–atmosphere interface,” Meteorol. Z. 4, 91–97 (1995).
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1988).
  35. F. G. Wienhold, H. Frahm, G. W. Harris, “Measurements of N2O fluxes from fertilized grassland using a fast response tunable diode laser spectrometer,” J. Geophys. Res. 99, 16557–16563 (1994). [CrossRef]
  36. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972). [CrossRef]
  37. P. Werle, R. Kormann, R. Mücke, Th. Foken, G. Kramm, H. Müller, “Analysis of time series data: a time domain stability criterion for stationarity tests,” in Proceedings of the EUROTRAC Symposium 1996, P. M. Borrell, P. Borel, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996), pp. 703–707.
  38. P. Werle, R. Mücke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  39. P. Schuepp, M. Y. Leclerc, J. I. McPherson, R. L. Dejardins, “Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation,” Boundary-Layer Meteorol. 50, 355–359 (1990). [CrossRef]
  40. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995). [CrossRef]
  41. O. A. Folorunso, D. E. Rolston, “Spatial variability of field-measured denitrification gas fluxes,” Soil Sci. Soc. Am. J. 48, 1214–1218 (1984). [CrossRef]
  42. M. A. K. Kahlil, R. A. Rasmussen, M. J. Shearer, R. W. Dalluge, L. Ren, C. L. Duan, “Factors affecting methane emissions from rice fields,” J. Geophys. Res. 103, 25219–25231 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited