OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 866–877

Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction

Francis Dalaudier, Valery Kan, and Alexandre S. Gurvich  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 866-877 (2001)
http://dx.doi.org/10.1364/AO.40.000866


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth’s atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

© 2001 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.4950) Atmospheric and oceanic optics : Ozone
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(290.5930) Scattering : Scintillation

History
Original Manuscript: December 1, 1999
Revised Manuscript: July 17, 2000
Published: February 20, 2001

Citation
Francis Dalaudier, Valery Kan, and Alexandre S. Gurvich, "Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction," Appl. Opt. 40, 866-877 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991). [CrossRef]
  2. A. F. Popescu, “ENVISAT’s Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 365–373 (1994). [CrossRef]
  3. A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997). [CrossRef]
  4. ENVISAT home page, http://envisat.estec.esa.nl/ .
  5. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997). [CrossRef]
  6. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997). [CrossRef]
  7. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).
  8. Ch. Montigny, “Essai sur les effets de la réfraction et de la dispersion produits par l’air atmosphérique,” Mem Cl. Soc. Acad. R. Belg. 26, 1–70 (1855).
  9. Ch. Montigny, “Sur la scintillation,” Cosmos 19, 166–168, 191–196 (1856).
  10. Ch. Montigny, “Notice sur la séparation des trajectoires décrites dans l’atomsphère par des rayons de même origine sidérale, mais de réfrangibilité différente, et sur les effets de cette séparation à l’égard de la scintillation,” Bull. Acad. R. Belg. 29, 80–99 (1870).
  11. L. Respighi, “Sur la scintillation des étoiles,” C. R. Assoc. Fr. Avance. Sci. 1, 148–155 (1872).
  12. F. Zwicky, “Seeing,” Publ. Astron. Soc. Pac. 62, 150–155 (1950). [CrossRef]
  13. V. Kan, F. Dalaudier, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40, 878–889 (2001). [CrossRef]
  14. Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media (Springer-Verlag, Berlin, 1990). [CrossRef]
  15. A. T. Young, “Scintillations during occultations by planets: an approximate theory,” Icarus 27, 335–357 (1976). [CrossRef]
  16. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966). [CrossRef]
  17. A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).
  18. P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968). [CrossRef]
  19. R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972). [CrossRef]
  20. U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, D.C., 1976) or http://www.pdas.com/atmos.htm .
  21. G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).
  22. S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).
  23. F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997). [CrossRef]
  24. A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).
  25. F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994). [CrossRef]
  26. A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited