OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 906–912

Infrared Ellipsometry Characterization of Porous Silicon Bragg Reflectors

Shahin Zangooie, Mathias Schubert, Chris Trimble, Daniel W. Thompson, and John A. Woollam  »View Author Affiliations

Applied Optics, Vol. 40, Issue 6, pp. 906-912 (2001)

View Full Text Article

Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate porous silicon Bragg reflectors in a nondestructive manner using variable angle-of-incidence infrared spectroscopic ellipsometry. In addition to the thickness, volume porosity, inhomogeneity, and optical anisotropy, properties of the solid content of the porous material are investigated in terms of dielectric function and surface chemistry. The material was found to have positive birefringence. The high sensitivity of the technique is employed to detect and identify infrared resonant absorptions related to different Si—H as well as Si—O—Si vibrational modes. The average electrical resistivity of the solid content of the porous material is determined to be 0.03 Ω cm, which is larger than the corresponding bulk value of 0.019 Ω cm. Furthermore the average carrier concentration in the porous material shows a decrease from 6.2 × 10<sup>18</sup> cm<sup>−3</sup> to 4 × 10<sup>18</sup> cm<sup>−3</sup>.

© 2001 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(130.3060) Integrated optics : Infrared
(160.1190) Materials : Anisotropic optical materials
(310.6860) Thin films : Thin films, optical properties

Shahin Zangooie, Mathias Schubert, Chris Trimble, Daniel W. Thompson, and John A. Woollam, "Infrared Ellipsometry Characterization of Porous Silicon Bragg Reflectors," Appl. Opt. 40, 906-912 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell Syst. Tech. J. 35, 333–347 (1956).
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
  3. A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
  4. G. Kaltsas and A. G. Nassiopoulos, “Frontside bulk silicon micromachining using porous-silicon technology,” Sens. Actuators A 65, 175–180 (1998).
  5. S. Zangooie, R. Bjorklund, and H. Arwin, “Vapor sensitivity of thin porous silicon layers,” Sens. Actuators B 43, 168–174 (1997).
  6. T. Laurell, J. Drott, L. Rosengren, and K. Lindström, “Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix,” Sens. Actuators B 31, 161–166 (1996).
  7. A. Janshoff, K.-P. S. Dancil, C. Steinem, D. P. Greiner, V. S.-Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, and M. R. Ghadiri, “Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing,” J. Am. Chem. Soc. 120, 12108–12116 (1998).
  8. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
  9. M. G. Berger, R. Arens-Fischer, S. T. Frohnhoff, C. Dieker, K. Winz, H. Münder, H. Lüth, M. Arntzen, and W. Theiss, “Formation and properties of porous silicon superlattices,” Mater. Res. Soc. Symp. Proc. 358, 327–332 (1995).
  10. C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. 67, 2983–2985 (1995).
  11. S. Zangooie, R. Jansson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. A 16, 2901–2912 (1998).
  12. S. Zangooie, R. Jansson, and H. Arwin, “Ellipsometric characterization of anisotropic porous silicon Fabry-Perot filters and investigation of temperature effects on capillary condensation efficiency,” J. Appl. Phys. 86, 850–858 (1999).
  13. C. Pickering, L. T. Canham, and D. Brumhead, “Spectroscopic ellipsometry characterization of light-emitting porous silicon structures,” Appl. Sur. Sci. 63, 22–26 (1993).
  14. U. Rossow, U. Frotscher, M. Thönissen, M. G. Berger, S. Frohnhoff, H. Münder, and W. Richter, “Influence of the formation conditions on the microstructure of porous silicon layers studied by spectroscopic ellipsometry,” Thin Solid Films 255, 5–8 (1995).
  15. S. Zangooie, R. Bjorklund, and H. Arwin, “Water interaction with thermally oxidized porous silicon layers,” J. Electrochem. Soc. 144, 4027–4035 (1997).
  16. C. Wongmanerod, S. Zangooie, and H. Arwin, “Nondestructive determination of pore size distribution and specific surface area in thin porous silicon films by spectroscopic ellipsometry,” Appl. Surf. Sci. (to be published).
  17. R. L. Smith and S. D. Collins, “Porous silicon formation mechanism,” J. Appl. Phys. 71, R1–R22 (1992).
  18. S.-F. Chuang, S. D. Collins, and R. L. Smith, “Preferential propagation of pores during the formation of porous silicon: a transmission electron microscopy study,” Appl. Phys. Lett. 55, 675–677 (1989).
  19. A. Parisini, N. Brunetto, and G. Amato, “TEM and photoluminescence characterization of porous-silicon layers from 〈111〉-oriented p+ silicon substrates,” Nuovo Cimento D 18, 1233–1239 (1996).
  20. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 95–192 (1997).
  21. H. Unno, K. Imai, and S. Muramoto, “Dissolution reaction effect on porous-silicon density,” J. Electrochem. Soc. 134, 645–648 (1987).
  22. T. E. Tiwald, D. W. Thompson, J. A. Woollam, W. Paulson, and R. Hance, “Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles,” Thin Solid Films 313–314, 661–666 (1998).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1987).
  24. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
  25. M. Schubert, B. Reinländer, J. A. Woollam, B. Johs, and C. M. Herzinger, “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A 13, 875–883 (1996).
  26. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
  27. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, 1996), Chap. 6.
  28. S. Zangooie, R. Jansson, and H. Arwin, “Electrochemical tailoring and optical investigation of advanced refractive index profiles in porous silicon layers,” Mater. Res. Soc. Symp. Proc. 557, 195–200 (1999).
  29. H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1986).
  30. R. C. Anderson, R. S. Muller, and C. W. Tobias, “Chemical surface modification of porous silicon,” J. Electrochem. Soc. 140, 1393–1396 (1993).
  31. W. Theiss, M. Arntzen, S. Hilbrich, M. Wernke, R. Arens-Fischer, and M. G. Berger, “From minutes to months: aging of porous silicon single layers and superlattices,” Phys. Status Solidi 190, 15–20 (1995).
  32. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature (London) 353, 335–337 (1991).
  33. D. Buttard, D. Bellet, and T. Baumbach, “X-ray diffraction investigation of porous silicon superlattices,” Thin Solid Films 276, 69–72 (1996).
  34. I. Berbezier and A. Halimoui, “A microstructural study of porous silicon,” J. Appl. Phys. 74, 5421–5425 (1993).
  35. U. Grüning, S. C. Gujrathi, S. Poulin, Y. Diawara, and A. Yelon, “Remote oxygen-containing hydrogen plasma treatment of porous silicon,” J. Appl. Phys. 75, 8075–8079 (1994).
  36. M. Ben-Chorin, F. Möller, and F. Koch, “Nonlinear electrical transport in porous silicon,” Phys. Rev. B 49, 2981–2984 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited