OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 916–920

Theory of 1-N-way phase-locked resonators

Eric K. Gorton and R. Michael Jenkins  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 916-920 (2001)
http://dx.doi.org/10.1364/AO.40.000916


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 1-N-way resonator based on beam splitting and beam combining effects in rectangular cross-sectional multimode waveguides was recently proposed. Such a resonator structure offers a valuable way in which N low-power laser elements may be combined in a coherent fashion. We examine the case of passive 1-N-way resonators. We develop a theory of these 1-N-way structures to show that there is only one possible mode of these resonators. The theory is used to give a scaling law for the design tolerances of the beam splitting and beam combining region of the resonator.

© 2001 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.4780) Lasers and laser optics : Optical resonators
(230.7370) Optical devices : Waveguides

History
Original Manuscript: February 2, 2000
Revised Manuscript: June 19, 2000
Published: February 20, 2001

Citation
Eric K. Gorton and R. Michael Jenkins, "Theory of 1-N-way phase-locked resonators," Appl. Opt. 40, 916-920 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Talbot, “Facts relating to optical science no IV,” Philos. Mag. 9, 401–407 (1836).
  2. D. Mehuys, W. Streifer, R. G. Waarts, D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823–825 (1991). [CrossRef] [PubMed]
  3. R. M. Jenkins, J. Banerji, A. R. Davies, J. M. Heaton, “1-N-way phased array resonator,” in Conference on Lasers and Electro Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 228–229.
  4. R. M. Jenkins, J. M. Heaton, “Optical device,” international patent application PCT/GB91/02129 (1992); UK patent application 9,027,657.7 (priority date 20December1990).
  5. R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett. 17, 991–993 (1992). [CrossRef] [PubMed]
  6. J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, K. P. Hilton, “Novel 1-N-way integrated optical beamsplitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides,” Appl. Phys. Lett. 61, 1754–1756 (1992). [CrossRef]
  7. R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “A novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994). [CrossRef]
  8. J. Banerji, A. R. Davies, R. M. Jenkins, “Comparison of Talbot and 1-N-way phase locked resonators,” Appl. Opt. 36, 1604–1609 (1997). [CrossRef] [PubMed]
  9. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416–419 (1973). [CrossRef]
  10. R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975). [CrossRef]
  11. K. D. Laakmann, W. H. Steier, “Waveguides: characteristic modes of hollow rectangular dielectric waveguides,” Appl. Opt. 15, 1334–1340 (1976). [CrossRef] [PubMed]
  12. S. Wolfram, Mathematica—A System for Doing Mathematics by Computer, 2nd ed. (Addison-Wesley, Reading, Mass., 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited