OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 957–964

Diode-Laser Tomography for Arcjet Plume Reconstruction

Feng-Yuan Zhang, Toshitaka Fujiwara, and Kimiya Komurasaki  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 957-964 (2001)
http://dx.doi.org/10.1364/AO.40.000957


View Full Text Article

Acrobat PDF (814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diode-laser absorption tomography is described with which the spatial temperature and the atomic number density distribution of a 3-kW class arcjet can be derived simultaneously by reconstruction of the absorption coefficient field of the arcjet’s argon exhaust plume. One can perform various parameter measurements by changing the arcjet’s mass-flow rates and discharge currents. The maximum temperature and atomic number density increase with the mass-flow rate and the discharge current. The trend for increase is not always found for a specific input power, although at a fixed mass-flow rate the power increases at that rate.

© 2001 Optical Society of America

OCIS Codes
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(350.5400) Other areas of optics : Plasmas

Citation
Feng-Yuan Zhang, Toshitaka Fujiwara, and Kimiya Komurasaki, "Diode-Laser Tomography for Arcjet Plume Reconstruction," Appl. Opt. 40, 957-964 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-957


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. G. Liebeskind, H. K. Hanson, and M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6227 (1993).
  2. M. Auweter-Kurtz, B. Glocker, H. L. Kurtz, E. W. Messerschmid, M. Riehle, and D. M. Zube, “Arcjet thruster development,” J. Propul. Power 12, 1077–1083 (1996).
  3. T. Yoshikawa, K. Onoe, S. Tsuri, M. Ishii, and K. Uematsu, “Development of a low power arcjet thruster,” paper IEPC-9–043, presented at the 22nd AIAA/AIDAA/DGLR/JSASS International Electric Propulsion Conference, Viareggio, Italy, 14–17 October 1991 (ETS Editrice, Pisa, Italy, 1992).
  4. E. Tosti and W. D. Deininger, “Plume analysis of A 10 Kwe/N arcjet using emission spectroscopy,” paper IEPC-91–092, presented at the 22nd AIAA/AIDAA/DGLR/JSASS International Electric Propulsion Conference, Viareggio, Italy, 14–17 October 1991 (ETS Editrice, Pisa, Italy, 1992).
  5. F. S. Gulczinski, L. B. King, J. E. Foster, S. W. Kim, and A. D. Gallimore, “Near and far-field plume studies of a 1 KW Arcjet,” AIAA paper 94–3137, presented at the 30th Joint Propulsion Conference, Indianapolis, Indiana, 27–29 June 1994 (American Institute of Aeronautics and Astronautics, Reston, Va., 1994).
  6. J. M. Sankovic, J. A. Hamley, and T. W. Haag, Hydrogen arcjet technology, paper IEPC-91–018, presented at the 22nd AIAA/AIDAA/DGLR/JSASS International Electric Propulsion Conference, Viareggio, Italy, 14–17 October 1991 (ETS Editrice, Pisa, Italy, 1992).
  7. C. S. Park, M. E. Newfield, D. G. Fletcher, and T. Gokcen, “Spectroscopic measurements of the flows in an arc-jet facility,” AIAA paper 98–0893, presented at the 36th Aerospace Science Meeting and Exhibit and 1998 ASME Wind Energy Symposium, Reno, Nevada, 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).
  8. H. Tahara, N. Uda, Y. Tsubakishita, and T. Yoshikawa, “Optical measurement and numerical analysis of medium-power arcjet non-equilibrium flowfields,” IEPC paper IEPC-93–133, presented at the 23rd AIAA/AIDAA/DGLR/JSASS International Electric Propulsion Conference, Seattle, Wash., 13–16 September 1993 (American Institute of Aeronautics and Astronautics, Reston, Va., 1993).
  9. M. A. Cappelli and P. V. Storm, “Interrior plasma diagnostics of arcjet thrusters,” J. Propul. Power 12, 1070–1076 (1996).
  10. L. Y. Jiang and J. P. Sislian, “Velocity and density measurements in supersonic high-temperature exhaust plumes,” AIAA J. 36, 1216–1222 (1998).
  11. F. Y. Zhang, K. Komurasaki, T. Iida, and T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814–1822 (1999).
  12. M. P. Arroyo, S. Langlogis, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurement of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3370 (1994).
  13. B. E. Grossmann and E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
  14. K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492–5500 (1995).
  15. M. R. Nyden, P. Vallikul, and Y. R. Sivathanu, “Tomographic reconstruction of the moments of local probability density functions in turbulent flow fields,” J. Quant. Spectrosc. Radiat. Transfer 55, 345–356 (1996).
  16. W. J. Kessler, M. G. Allen, E. Y. Lo, and M. F. Miller, “Tomographic reconstruction of air temperature and density profiles using tunable diode laser absorption measurements on O2,” AIAA paper 95–1953, presented at the 26th Plasmadynamics and Lasers Conference, San Diego, Calif., 19–22 June 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).
  17. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed (Gordon & Breach, Amsterdam, 1996), pp. 562–574.
  18. F. Y. Zhang, “Simultaneous measurements of state parameters in hypersonic flows using diode-laser absorption spectroscopy,” Ph.D. dissertation (Department of Microsystem Engineering, Nagoya University, Nagoya, Japan, 1998).
  19. M. G. Mellon, Analytical Absorption Spectroscopy (Absorptimetry and Colorimetry) (Wiley, New York, 1965), pp. 78–98.
  20. Y. B. Zel’dovich, Y. P. Raizer, W. D. Hayes, and R. F. Probstein, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966), pp. 107–172.
  21. W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland, Amsterdam, 1968), pp. 9–65.
  22. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987), pp. 56–77.
  23. L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–39 (1974).
  24. Y. S. Kwoh, I. S. Reed, and T. K. Truong, “A generalized |ω|-filter for 3-D reconstruction,” IEEE Trans. Nucl. Sci. NS-24, 1990–1998 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited