OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 965–968

Simultaneous velocimetry and thermometry of air by use of nonresonant heterodyned laser-induced thermal acoustics

Roger C. Hart, R. Jeffrey Balla, and G. C. Herring  »View Author Affiliations

Applied Optics, Vol. 40, Issue 6, pp. 965-968 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (77 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonresonant laser-induced thermal acoustics is used with heterodyne detection to measure temperature (285–295 K) and a single component of velocity (20–150 m/s) in an atmospheric pressure, subsonic, unseeded air jet. Good agreement is found with Pitot-tube measurements of velocity (0.2% at 150 m/s and 2% at 20 m/s) and the isentropic expansion model for temperature (0.3%).

© 2001 Optical Society of America

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(280.7250) Remote sensing and sensors : Velocimetry

Original Manuscript: April 27, 2000
Revised Manuscript: September 28, 2000
Published: February 20, 2001

Roger C. Hart, R. Jeffrey Balla, and G. C. Herring, "Simultaneous velocimetry and thermometry of air by use of nonresonant heterodyned laser-induced thermal acoustics," Appl. Opt. 40, 965-968 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. 19, 1681–1683 (1994). [CrossRef] [PubMed]
  2. E. B. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994). [CrossRef] [PubMed]
  3. M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995). [CrossRef]
  4. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995). [CrossRef] [PubMed]
  5. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998). [CrossRef]
  6. M. S. Brown, W. L. Roberts, “Single point thermometry in high-pressure sooting, premixed combustion environments,” J. Propulsion Power 15, 119–127 (1999). [CrossRef]
  7. R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999). [CrossRef]
  8. R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000). [CrossRef] [PubMed]
  9. S. Schlamp, E. B. Cummings, T. H. Sobota, “Laser-induced thermal-acoustic velocimetry with heterodyne detection,” Opt. Lett. 25, 224–226 (2000). [CrossRef]
  10. D. J. W. Walker, R. B. Williams, P. Ewart, “Thermal grating velocimetry,” Opt. Lett. 23, 1316–1318 (1998). [CrossRef]
  11. A. A. Maznev, K. A. Nelson, J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23, 1319–1321 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited