OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 7 — Mar. 1, 2001
  • pp: 1029–1036

Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing

Sandrine Lévêque-Fort  »View Author Affiliations


Applied Optics, Vol. 40, Issue 7, pp. 1029-1036 (2001)
http://dx.doi.org/10.1364/AO.40.001029


View Full Text Article

Enhanced HTML    Acrobat PDF (1470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An original acousto-optic method is described that allows one to reveal optical contrasts through biological tissues that are several centimeters thick with a millimeter-sized resolution. This technique is based on the interaction of scattered laser light with a focused ultrasonic field. The modulation depth of the optical speckle is related to local optical properties of the sample. Our parallel-processing approach to the demodulation of the speckle improves the observed degree of modulation by 2 orders of magnitude and quickly yields a good statistical value. Optically absorbing objects were imaged inside 35-mm-thick biological tissues.

© 2001 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.6150) Imaging systems : Speckle imaging
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: March 20, 2000
Revised Manuscript: November 27, 2000
Published: March 1, 2001

Citation
Sandrine Lévêque-Fort, "Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing," Appl. Opt. 40, 1029-1036 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-7-1029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  2. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999). [CrossRef]
  3. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994). [CrossRef]
  4. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images using multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999). [CrossRef]
  5. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998). [CrossRef]
  6. A. A. Oraevsky, “Opto-acoustic tomography of deeply embedded tumors and early subsurface lesions,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/Europe), Technical Digest (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 236–238.
  7. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993). [CrossRef]
  8. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995). [CrossRef]
  9. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef] [PubMed]
  10. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997). [CrossRef]
  11. L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997). [CrossRef]
  12. S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.
  13. L. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998). [CrossRef]
  14. S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999). [CrossRef]
  15. G. Yao, L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000). [CrossRef]
  16. J. Lewiner, ed., L’imagerie du corps humain (Editions du Physique, Paris, 1984).
  17. J. Perdijon, L’écographie: contrôle non destructif, examen medical (Dunod, Paris, 1981).
  18. P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited