OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 7 — Mar. 1, 2001
  • pp: 1037–1043

Ray and van Cittert–Zernike characterization of spatial coherence

José M. Sasián, Scott A. Lerner, Tony Y. Lin, and Lenny Laughlin  »View Author Affiliations


Applied Optics, Vol. 40, Issue 7, pp. 1037-1043 (2001)
http://dx.doi.org/10.1364/AO.40.001037


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss a ray and a van Cittert–Zernike characterization of spatial coherence in condensers for projection systems. We present a rule of thumb with which to estimate the modulus of the coherence function at a given point of the illuminated object and a ray-tracing methodology with which to determine this modulus. For uniform illumination of the pupil we relate the modulus of the coherence function and the pupil-filling factor. We suggest that the rms of the angular ray spread at a given object point is an appropriate metric with which to characterize local coherence properties.

© 2001 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.3960) Imaging systems : Microlithography
(110.4980) Imaging systems : Partial coherence in imaging

History
Original Manuscript: August 7, 2000
Revised Manuscript: December 12, 2000
Published: March 1, 2001

Citation
José M. Sasián, Scott A. Lerner, Tony Y. Lin, and Lenny Laughlin, "Ray and van Cittert–Zernike characterization of spatial coherence," Appl. Opt. 40, 1037-1043 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-7-1037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Borodovsky, “Partial coherence variations linked to line-width changes,” Solid State Technol. 38, 42 (1995).
  2. J. P. Kirk, C. J. Progler, “Pupil illumination in situ measurement of partial coherence,” in Optical Microlithography, L. Van de Hove, ed., Proc. SPIE3334, 281–288 (1998).
  3. I. M. Grodnensky, E. Morita, K. Suwa, S. Hirukawa, “Characterization of spatial coherence uniformity in exposure tools,” in Optical Microlithography, L. Van de Hove, ed., Proc. SPIE3334, 289–296 (1998).
  4. M. Ceglio, A. M. Hawryluk, G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993). [CrossRef] [PubMed]
  5. G. E. Sommargren, L. G. Seppala, “Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography,” Appl. Opt. 32, 6938–6944 (1993). [CrossRef] [PubMed]
  6. W. C. Sweatt, “Condenser for illuminating a ring field,” U.S. patent5,361,292 (1November1994).
  7. H. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. London Ser. A 208, 263–277 (1951). [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959), Chap. 10, Sec. 4.2.
  9. D. S. Goodman, A. E. Rosenbluth, “Condenser aberrations in Kohler illumination,” in Optical/Laser Microlithography, B. J. Lin, ed., Proc. SPIE922, 108–126 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited