OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 7 — Mar. 1, 2001
  • pp: 1080–1088

Analytic Thermal Modeling for dc-to-Midrange Modulation Frequency Responses of Thin-Film High- T c Superconductive Edge-Transition Bolometers

Mehdi Fardmanesh  »View Author Affiliations


Applied Optics, Vol. 40, Issue 7, pp. 1080-1088 (2001)
http://dx.doi.org/10.1364/AO.40.001080


View Full Text Article

Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin-film superconductive edge-transition bolometers are modeled with a one-dimensional analytic thermal model with joule heating, film and substrate materials, and the physical interface effects taken into consideration. The results from the model agree well with the experimental results of samples made of large-meander-line Yba2Cu3O7-x films on crystalline SrTiO3, LaAlO3, and MgO substrates up to 100 kHz, the limits of the experimental setup. Compared with the results of the SrTiO3 substrate samples, the results from the model of the LaAlO3 and the MgO substrate samples deviate slightly from the measured values at very low modulation frequencies (below ~10 Hz). The deviation increases for higher thermal-conductive substrate materials. When the model was used, the substrate absorption and the thermal parameters of the devices could also be investigated.

© 2001 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(230.0040) Optical devices : Detectors

Citation
Mehdi Fardmanesh, "Analytic Thermal Modeling for dc-to-Midrange Modulation Frequency Responses of Thin-Film High- T c Superconductive Edge-Transition Bolometers," Appl. Opt. 40, 1080-1088 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-7-1080


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. E. Phelan, “Thermal response of thin-film high-Tc superconductors to modulated irradiation,” J. Therm. Phys. Heat Transfer 9, 397–402 (1995).
  2. S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−d films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
  3. M. Fardmanesh, A. Rothwarf, and K. J. Scoles, “Low and midrange modulation frequency response for YBCO infrared detectors: interface effects on the amplitude and phase,” IEEE Trans. Appl. Supercond. 5, 7–13 (1995).
  4. M. Nahum, S. Verghese, and P. L. Richards, “Thermal boundary resistance for YBa2Cu3O7−x films,” Appl. Phys. Lett. 59, 2034–2036 (1991).
  5. A. V. Sergeev, A. D. Semenov, P. Kouminov, V. Trifonov, I. G. Goghize, B. S. Karasik, G. N. Gol’tsman, and E. M. Gershenzon, “Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation,” Phys. Rev. B 49, 9091–9096 (1994).
  6. C. D. Marshal, I. M. Fishman, R. C. Dorfman, C. B. Eom, and M. D. Fayer, “Thermal diffusion, interfacial thermal barrier, and ultrasonic propagation in YBa2Cu3O7−x thin films: surface-selective transient-grating experiments,” Phys. Rev. B 45, 10009–10021 (1992).
  7. M. Fardmanesh, K. J. Scoles, and A. Rothwarf, “Control of the responsivity and the detectivity of superconductive edge-transition YBa2Cu3O7−x bolometers through substrate properties,” Appl. Opt. 38, 4735–4742 (1999).
  8. K. Fushinobu, P. E. Phelan, K. Hijikata, T. Nagasaki, and M. I. Flik, “Thermal analysis of the performance of a high-Tc superconducting bolometer,” J. Heat Transfer 116, 275–279 (1994).
  9. A. Frenkel, “Mechanism of nonequilibrium optical response of high-temperature superconductors,” Phys. Rev. B 48, 9717–9725 (1993).
  10. H. Neff, “Modeling and optimization of high-Tc superconducting bolometers: the effect of film thickness,” J. Appl. Phys. 69, 8375–8379 (1991).
  11. M. I. Flik, P. E. Phelan, and C. L. Tien, “Thermal model for the bolometric response of high-Tc superconducting films to optical pulses,” Cryogenics 30, 1118–1128 (1990).
  12. M. Fardmanesh, A. Rothwarf, and K. J. Scoles, “The responsivity and detectivity limits for patterned YBa2Cu3O7−x superconductive IR-detectors,” in Proceedings of the Sixth International Superconductive Electronics Conference, H. Kock and S. Knappe, eds. (Physikaisch-Technidsche Bundesanstalt, Berlin, 1997), Vol. 3, pp. 399–401.
  13. M. Fardmanesh, K. J. Scoles, and A. Rothwarf, “DC characteristics of patterned YBa2Cu3O7−x superconducting thin film bolometers: artifacts related to joule heating, ambient pressure, and microstructure,” IEEE Trans. Appl. Supercond. 8, 69–78 (1998).
  14. M. Fardmanesh, A. Rothwarf, and K. J. Scoles, “YBa2Cu3O7−x infrared bolometers: temperature dependent responsivity and deviations from the dR/dT curve,” J. Appl. Phys. 77, 4568–4575 (1995).
  15. A. Jahanzeb, C. M. Travers, Z. Celik-Butler, and D. P. Butler, “A semiconductor YBaCuO microbolometer for room temperature IR imaging,” IEEE Trans. Electron Devices 44, 1795–1801 (1997).
  16. C. M. Travers, A. Jahanzeb, D. P. Butler, and Z. Celik-Butler, “Fabrication of semiconducting YBaCuO surface-micromachined bolometer arrays,” J. Microelectromech. Syst. 6, 271–276 (1997).
  17. M. Fardmanesh, M. Ihsan, A. Rothwarf, K. Scoles, and K. Pourrezaei, “Thick and thin film Y–Ba–Cu–O infrared detectors,” AIP Conf. Proc. 251, 681–691 (1991).
  18. M. Nahum, Q. Hu, P. L. Richards, S. A. Sachtjen, N. Newman, and B. F. Cole, “Fabrication and measurement of high Tc superconducting bolometers,” IEEE Trans. Magn. 27, 3081–3084 (1991).
  19. P. L. Richards, J. Clarke, R. Leoni, Ph. Lerch, S. Verghese, M. R. Beasley, T. H. Geballe, R. H. Hammond, P. Rosenthal, and S. R. Spielman, “Feasibility of the high T superconducting bolometer,” Appl. Phys. Lett. 54, 283–285 (1989).
  20. M. Fardmanesh, A. Rothwarf, and K. J. Scoles, “Noise characteristics and detectivity of YBa2Cu3O7 superconducting bolometers: bias current, frequency, and temperature dependence,” J. Appl. Phys. 79, 2006–2011 (1996).
  21. H. Chou, H. Z. Chen, M. T. Hong, Y. C. Chen, and T. C. Chow, “Bolometric detection in a precipitation free YBa2Cu3O7−x film at 77 K,” Appl. Phys. Lett. 68, 2741–2743 (1996).
  22. J. H. Hao, F. Q. Zhou, X. R. Zhao, H. D. Sun, X. J. Yi, and Z. G. Li, “Responsitivity calculation and measurement of YBaCuO optical detector,” IEEE Trans. Appl. Supercond. 3, 2167–2169 (1993).
  23. G. D. Poulin, J. Lachapelle, S. H. Moffat, F. A. Hegmann, and J. S. Preston, “Current-voltage characteristics of dc voltage biased high temperature superconducting microbridges,” Appl. Phys. Lett. 66, 2576–2578 (1995).
  24. K. D. Irwin, G. C. Hilton, D. A. Wollman, and J. M. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback,” Appl. Phys. Lett. 69, 1945–1947 (1996).
  25. Z. M. Zhang and A. Frenkel, “Thermal and nonequilibrium responses of superconductors for radiation detectors,” J.Supercond. 7, 871–883 (1994).
  26. K. Kamaras, K. L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J. Kircher, P. L. Richards, and J. L. Stehle, “The low-temperature infrared optical functions of SrTiO determined by reflectance spectroscopy and spectroscopic ellipsometry,” J. Appl. Phys. 78, 1235–1240 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited