OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 8 — Mar. 10, 2001
  • pp: 1187–1194

Two-dimensional phase unwrapping by quad-tree decomposition

Antonio Baldi  »View Author Affiliations


Applied Optics, Vol. 40, Issue 8, pp. 1187-1194 (2001)
http://dx.doi.org/10.1364/AO.40.001187


View Full Text Article

Enhanced HTML    Acrobat PDF (3941 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One problem to be tackled when interferometric phase-shifting techniques are used is the method in which the phase can be reconstructed. Because an inverse trigonometric function appears in the formulation, the final data are not the phase, but the phase modulo 2π. A new phase-unwrapping algorithm based on a two-step procedure is presented. In the first step, the digital image to be analyzed is divided into continuous patches by a quad-tree-like recursive procedure; in the second step, the same level patches are joined together by an error-norm-minimizing approach to obtain larger, almost continuous ones. The basic idea of the procedure is to simplify the problem by factoring the complete image into square, variable-size, homogeneous areas (i.e., regions with no internal phase jump) so that only interfaces need to be dealt with. By hierarchically recombining the so-obtained subimages, an unwrapped phase field can be obtained. After a complete description of the algorithm, some examples of its use on synthesized digital images are illustrated. As the algorithm can be used with and without quality masks and the error-minimizing step can use different norms, a full class of unwrapping algorithms can be implemented by this approach.

© 2001 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

History
Original Manuscript: March 21, 2000
Revised Manuscript: July 12, 2000
Published: March 10, 2001

Citation
Antonio Baldi, "Two-dimensional phase unwrapping by quad-tree decomposition," Appl. Opt. 40, 1187-1194 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-8-1187

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited