OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1299–1304

Efficiency of the Hartmann Test with Different Subpupil Forms for the Measurement of Turbulence-Induced Phase Distortions

Valerii Voitsekhovich, Leonardo Sanchez, Valeri Orlov, and Salvador Cuevas  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1299-1304 (2001)

View Full Text Article

Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The reconstruction quality of turbulence-induced phase distortions from Hartmann data is calculated for masks with different subpupil forms by means of computer simulations. Four subpupil forms are considered: the circle, the square, the hexagon, and the polar segment. We show that, for the case of a circular aperture, the mask with polar segment subpupils provides the best reconstruction quality.

© 2001 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

Valerii Voitsekhovich, Leonardo Sanchez, Valeri Orlov, and Salvador Cuevas, "Efficiency of the Hartmann Test with Different Subpupil Forms for the Measurement of Turbulence-Induced Phase Distortions," Appl. Opt. 40, 1299-1304 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. I. Balakhovskaya, V. I. Borisenko, E. A. Vitrichenko, K. L. Maslennikov, A. M. Prokhorov, P. Z. Sagdeyev, E. V. Trushin, and L. S. Chesalin, “Fast Hartmann test for problems in astronomical adaptive optics,” Reports of Academy of Sciences USSR, Dokl. Acad. Nauk SSSR 274, 257–260 (1984).
  2. V. V. Voitsekhovich, V. B. Gubin, and A. V. Mikulich,”An estimation of the parameters of adaptive astronomical systems on the base of experimental data, (in Russian),” Opt. Atmosferi. 1, 66–70 (1988).
  3. J. Primot, G. Rousset, and J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990).
  4. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am. A 6, 1913–1923 (1989).
  5. F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, and F. Merkle, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrosphys. 250, 280–290 (1991).
  6. W. Jiang, H. Li, C. Liu, X. Wu, S. Huang, H. Xian, Z. Rong, C. Wang, M. Li, N. Ling, and C. Guan, “A 37-element adaptive optics system with H-S wavefront sensor,” in Proceedings of the ICO-16 Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (International Commission for Optics 16 Secretariat, Garching, Germany, 1993), pp. 127–135.
  7. H. Li, H. Xian and W. Jiang, “Atmospheric turbulence parameter measurement using Hartmann–Shack wave-front sensor,” in Proceedings of the ICO-16 Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (International Commission for Optics 16 Secretariat, Garching, Germany, 1993), pp. 21–25.
  8. D. Colucci, M. Lloyd-Hart, D. Wittman, R. Angel, A. Ghez, and B. McLeod, “A reflective Shack–Hartmann wave-front sensor for adaptive optics,” Publ. Astron. Soc. Pac. 106, 1104–1110 (1994).
  9. R. C. Cannon, “Global wave-front reconstruction using Shack–Hartmann sensors,” J. Opt. Soc. Am. A 12, 2031–2039 (1995).
  10. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, “Comparison of curvature-based and Shack–Hartmann-based adaptive optics for large astronomical telescopes,” Appl. Opt. 36, 2856–2868 (1997).
  11. V. V. Voitsekhovich, “Hartmann test in atmospheric research,” J. Opt. Soc. Am. A 8, 1749–1757 (1996).
  12. D. Kouznetsov, V. V. Voitsekhovich, and R. Ortega-Martinez, “Simulation of turbulence-induced phase and logamplitude distortions,” Appl. Opt. 36, 464–469 (1997).
  13. V. V. Voitsekhovich and D. Kouznetsov, “Simulation of cross-correlated turbulence-induced phase fluctuations produced by many stars,” in Digest of ESO/OSA Topical Meeting on Astronomy with Adaptive Optics, D. Bonaccini, ed. (European Southern Observatory, Garching, Germany, 1998), pp. 721–728.
  14. D. Kouznetsov and V. V. Voitsekhovich, “Method of random wave vectors in the simulation of correlated random processes,” Meteorol. Z. N. F. 7, 230–236 (1998).
  15. V. V. Voitsekhovich, D. Kouznetsov, V. G. Orlov, and S. Cuevas, “Method of random wave vectors in simulation of anisoplanatic effects,” Appl. Opt. 38, 3985–3992 (1999).
  16. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  17. J. Herrmann, “Least-squares wave-front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980).
  18. E. P. Wallner, “Optimal wave-front correction using slope measurement,” J. Opt. Soc. Am. 73, 1771–1776 (1983).
  19. P. A. Bakut, V. E. Kirakosyants, V. A. Loginov, C. J. Solomon, and J. C. Dainty, “Optimal wave-front reconstruction from a Shack–Hartmann sensor by use of a Bayesian algorithm,” Opt. Commun. 109, 10–15 (1994).
  20. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
  21. C. J. Solomon, J. C. Dainty, and N. J. Wooder, “Bayesian estimation of atmospherically distorted wave fronts using Shack–Hartmann sensors,” Opt. Rev. 2, 217–220 (1995).
  22. V. V. Voitsekhovich, S. Bara, S. Rios, and E. Acosta, “Minimum-error phase reconstruction from Hartmann sensors with circular subpupils,” Opt. Commun. 148, 225–229 (1998).
  23. D. R. Purdy, “Fabrication of complex micro-optics components using photo-sculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994).
  24. T. J. Suleski and D. C. O’Shea, “Gray-scale masks for diffractive optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
  25. R. Navarro, E. Moreno-Barriuso, S. Bara, and T. Mancebo, “Phase plates for wave aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited