OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1305–1313

Sensitivity of radiometric measurements of the atmospheric CO2 column from space

Boyd T. Tolton and Dany Plouffe  »View Author Affiliations


Applied Optics, Vol. 40, Issue 9, pp. 1305-1313 (2001)
http://dx.doi.org/10.1364/AO.40.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Anthropogenic emissions of CO2 over the past century has altered significantly the global carbon cycle. Our understanding of the long-term climatic effects of these emissions would be improved greatly by satellite-based remote sounding of CO2. We provide an initial analysis of a simple satellite-based filter radiometer tuned to the spectral region around 6300 cm-1 (≈1.6 µm) to measure the atmospheric column of CO2 from space. We find that such an instrument has potential and that the sensitivity would be limited by our knowledge of the tropospheric temperature and water-vapor profiles.

© 2001 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: December 14, 1999
Revised Manuscript: June 28, 2000
Published: March 20, 2001

Citation
Boyd T. Tolton and Dany Plouffe, "Sensitivity of radiometric measurements of the atmospheric CO2 column from space," Appl. Opt. 40, 1305-1313 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-9-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Intergovernmental Panel on Climate Change (IPCC), Climate Change, The IPCC Scientific Assessment (Cambridge U. Press, New York, 1990).
  2. C. D. Keeling, R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, H. Roeloffzen, “A three-dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observational data,” in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Am. Geophys. Union55, 165–236 (1989).
  3. P. P. Tans, I. Y. Fung, T. Takahashi, “Observational constraints on the global atmospheric CO2 budget,” Science 247, 1431–1438 (1990). [CrossRef] [PubMed]
  4. R. J. Francey, P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, M. Trolier, “Changes in oceanic and terrestrial carbon uptake since 1982,” Nature (London) 373, 326–330 (1995). [CrossRef]
  5. P. Ciais, P. P. Tans, M. Trolier, J. W. C. White, R. J. Francey, “A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2,” Science 269, 1098–1102 (1995). [CrossRef] [PubMed]
  6. S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans, “A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models,” Science 282, 442–446 (1998). [CrossRef] [PubMed]
  7. C. D. Keeling, J. F. S. Chin, T. P. Whorf, “Increased activity of northern vegetation inferred from atmospheric CO2 measurements,” Nature (London) 382, 146–149 (1996). [CrossRef]
  8. J. T. Randerson, M. V. Thompson, T. J. Conway, I. Y. Fung, C. B. Field, “The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide,” Global Biogeochem. Cycles 11, 535–560 (1997). [CrossRef]
  9. S. A. Zimov, S. P. Davidov, G. M. Zimova, A. I. Davidova, F. S. Chapin, M. C. Chapin, F. J. Reynolds, “Contributions of disturbance to increasing seasonal amplitude of atmospheric CO2,” Science 284, 1973–1976 (1999). [CrossRef] [PubMed]
  10. T. J. Conway, P. P. Tans, L. S. Waterman, K. W. Thoning, “Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network,” J. Geophys. Res. 99, 22831–22855 (1994). [CrossRef]
  11. National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory, Carbon Cycle Group (1999), http://www.cmdl.noaa.gov/ccgg/ .
  12. A. S. Denning, I. Y. Fung, D. Randall, “Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota,” Nature (London) 376, 240–242 (1995). [CrossRef]
  13. United Nations Framework Convention on Climate Change, Kyoto Protocol (1997), http://www.unfccc.de/ .
  14. W. D. Komhyr, R. H. Gammon, T. B. Harris, L. S. Waterman, T. J. Conway, W. R. Taylor, K. W. Thoning, “Global atmospheric CO2 distributions and variations from 1968–1982 NOAA/GMCC CO2 flask sample data,” J. Geophys. Res. 90, 5567–5596 (1985). [CrossRef]
  15. J. H. Park, “Atmospheric CO2 monitoring from space,” Appl. Opt. 36, 2701–2712 (1997). [CrossRef] [PubMed]
  16. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyrey, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  17. National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere, (U.S. GPO, Washington, D.C., 1976).
  18. P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckman, C. D. Rodgers, S. D. Smith, E. J. Williamson, “Remote sounding of atmospheric temperature from Satellites II. The selective chopper radiometer for Nimbus D,” Proc. R. Soc. London Ser. A 320, 35–55 (1970). [CrossRef]
  19. F. W. Taylor, J. T. Houghton, G. D. Peskett, C. D. Rodgers, E. J. Williamson, “Radiometer for remote sounding of the upper atmosphere,” Appl. Opt. 11, 135–141 (1972). [CrossRef] [PubMed]
  20. B. T. Tolton, J. R. Drummond, “Measurements of the atmospheric carbon monoxide column with a ground-based length-modulated radiometer,” Appl. Opt. 38, 1897–1909 (1999). [CrossRef]
  21. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993). [CrossRef]
  22. A. E. Roche, J. B. Kumer, J. L. Mergenthaler, G. A. Ely, W. G. Uplinger, J. F. Potter, T. C. James, L. W. Sterritt, “The Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS: experiment description and performance,” J. Geophys. Res. 98, 10763–10775 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited