OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1314–1320

Monitoring O3 with solar-blind Raman lidars

Ferdinando de Tomasi, Maria R. Perrone, and Maria L. Protopapa  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1314-1320 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The benefits of retrieving ozone concentration profiles by a use of a single Raman signal rather than the Raman differential absorption lidar (DIAL) technique are investigated by numerical simulations applied either to KrF- (248 nm) or to quadrupled Nd:YAG- (266 nm) based Raman lidars, which are used for both daytime and nighttime monitoring of the tropospheric water-vapor mixing ratio. It is demonstrated that ozone concentration profiles of adequate accuracy and spatial and temporal resolution can be retrieved under low aerosol loading by a single Raman lidar because of the large value of the ozone absorption cross section both at 248 nm and at 266 nm. Then experimental measurements of Raman signals provided by the KrF-based lidar operating at the University of Lecce (40° 20′N, 18°6′E) are used to retrieve ozone concentration profiles by use of the Raman DIAL technique and the nitrogen Raman signal.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone

Original Manuscript: February 22, 2000
Revised Manuscript: August 15, 2000
Published: March 20, 2001

Ferdinando de Tomasi, Maria R. Perrone, and Maria L. Protopapa, "Monitoring O3 with solar-blind Raman lidars," Appl. Opt. 40, 1314-1320 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).
  2. K. M. Sarma, “Protection of the ozone layer-A success study of UNEP,” Linkages J. 3, 6–10 (1998).
  3. K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).
  4. M. H. Proffitt, A. O. Langford, “Groud-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
  5. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements at atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  6. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential absorption lidar measurements of tropospheric ozone with excimer–Raman hybrid laser,” Opt. Lett. 8, 347–239 (1983). [CrossRef] [PubMed]
  7. A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990). [CrossRef] [PubMed]
  8. D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).
  9. M. R. Gross, T. J. McGee, U. N. Singh, P. Kimvilakani, “Measurements of stratospheric aerosols with a combined elastic-Raman–backscatter lidar,” Appl. Opt. 34, 6915–6924 (1995). [CrossRef] [PubMed]
  10. D. Renaut, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980). [CrossRef] [PubMed]
  11. S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985). [CrossRef]
  12. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  13. J. Cooney, K. Petri, A. Salik, “Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar,” Appl. Opt. 24, 104–108 (1985). [CrossRef] [PubMed]
  14. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3032 (1994). [CrossRef] [PubMed]
  15. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).
  16. Ontar Corporation, 9 Village Way, North Andover, Mass. 01845-2000.
  17. Shardanand, “Nitrogen induced absorption of oxygen in the Herzberg continuum,” J. Quant. Spectrosc. Radiat. Transfer 18, 525–530 (1977). [CrossRef]
  18. Z. Liu, P. Voelger, N. Sugimoto, “Simulation of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000). [CrossRef]
  19. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited