## Accuracy of Laser Beam Center and Width Calculations

Applied Optics, Vol. 40, Issue 9, pp. 1378-1385 (2001)

http://dx.doi.org/10.1364/AO.40.001378

Acrobat PDF (127 KB)

### Abstract

The application of lasers in high-precision measurements and the demand for accuracy make the plane-wave model of laser beams unsatisfactory. Measurements of the variance of the transverse components of the photon impulse are essential for wavelength determination. Accuracy evaluation of the relevant calculations is thus an integral part of the assessment of the wavelength of stabilized-laser radiation. We present a propagation-of-error analysis on variance calculations when digitized intensity profiles are obtained by means of silicon video cameras. Image clipping criteria are obtained that maximize the accuracy of the computed result.

© 2001 Optical Society of America

**OCIS Codes**

(040.1520) Detectors : CCD, charge-coupled device

(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

(140.0140) Lasers and laser optics : Lasers and laser optics

**Citation**

Giovanni Mana, Enrico Massa, and Alessandro Rovera, "Accuracy of Laser Beam Center and Width Calculations," Appl. Opt. **40**, 1378-1385 (2001)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-9-1378

Sort: Year | Journal | Reset

### References

- G. Basile, A. Bergamin, G. Cavagnero, and G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
- B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, and E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
- A. Bergamin, G. Cavagnero, G. Mana, and G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10−9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
- A. Bergamin, G. Cavagnero, L. Cordiali, and G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
- A. E. Siegman, “New development in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 77–90.
- R. P. Loce and R. E. Jodoin, “Sampling theorem for geometric moment determination and its application to a laser beam position detector,” Appl. Opt. 29, 3835–3843 (1990).
- A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
- R. D. Jones and T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
- Y. Champagne, C. Paré, and P. A. Bélanger, “Method for direct measurement of the variance of laser beams,” Opt. Lett. 19, 505–507 (1994).
- A. Bergamin, G. Cavagnero, L. Cordiali, and G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
- B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, and P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, and H. Weichel, eds., Proc. SPIE 2375, 335–348 (1995).
- “Lasers and laser-related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor,” ISO/FDIS 11146:1999(E) (International Organization for Standardization, Geneva, Switzerland, 1999).
- D. Gloge and D. Marcuse, “Formal theory of light rays,” J. Opt. Soc. Am. 59, 1629–1631 (1969).
- L. C. Baird, “Moments of a wave packet,” Am. J. Phys. 40, 327–329 (1972).
- S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameter and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
- M. A. Porras, J. Alda, and E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
- M. W. Sasnett and T. F. Johnston, Jr., “Beam characterization and measurement of propagation attributes,” in Laser Beam Diagnostic, R. N. Hindy and Y. Kohanzadeh, eds., Proc. SPIE 1414, 21–32 (1991).
- Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993).
- C. D. Meyer and G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).
- R. Mugno, “La macchina di misura a coordinate esperta,” Ph.D. dissertation (Politecnico di Torino, Torino, Italy, 1998).
- CCIR camera Model 6710 (Cohu, Inc., P.O. Box 85623, San Diego, California 92186).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.