OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1412–1416

Tracking novelty filter at 780 nm based on a photorefractive polymer in a two-beam coupling geometry

Eric Hendrickx, David Van Steenwinckel, and André Persoons  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1412-1416 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have constructed an all-optical tracking novelty filter based on the dynamic holographic properties of an efficient and fast infrared-sensitive photorefractive polymer. The photorefractive polymer was used in a two-beam coupling geometry. The polymer had a gain coefficient of 175 cm-1 at a wavelength of 780 nm and an applied field of 72 V/µm. In contrast to what has been observed in photorefractive crystals, the gain coefficient and the filter contrast are largely independent of the writing beam’s intensity ratio. We show images of a swinging pendulum observed through the novelty filter.

© 2001 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers

Original Manuscript: October 12, 2000
Revised Manuscript: November 30, 2000
Published: March 20, 2001

Eric Hendrickx, David Van Steenwinckel, and André Persoons, "Tracking novelty filter at 780 nm based on a photorefractive polymer in a two-beam coupling geometry," Appl. Opt. 40, 1412-1416 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984), Chap. 4.
  2. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987). [CrossRef] [PubMed]
  3. M. Cronin-Golomb, A. M. Biernacki, C. Lin, H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987). [CrossRef] [PubMed]
  4. R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988). [CrossRef]
  5. P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999). [CrossRef]
  6. B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).
  7. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
  8. B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).
  9. D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998). [CrossRef]
  10. R. Lemke, “Knoevenagel condensation in dimethylformamide,” Synthesis359–361 (1974). [CrossRef]
  11. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998). [CrossRef]
  12. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000). [CrossRef]
  13. M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995). [CrossRef]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  15. A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997). [CrossRef] [PubMed]
  16. A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000). [CrossRef]
  17. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998). [CrossRef]
  18. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited