OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1417–1422

Temporal solitons in second-harmonic generation with a noncollinear phase-mismatching scheme

Tiejun Zhang, Koichi Yamakawa, Makoto Aoyama, and Motoki Yonemura  »View Author Affiliations


Applied Optics, Vol. 40, Issue 9, pp. 1417-1422 (2001)
http://dx.doi.org/10.1364/AO.40.001417


View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A noncollinear second-harmonic-generation scheme that includes two gratings and a nonlinear optical crystal generates temporal solitons with a noncollinear phase mismatch and frequency-chirped laser pulses. At 180-fs pulse duration, 25-GW/cm2 fundamental intensity, -7647.3-m-1 wave-vector mismatch, 66-fs delay time, and ±3.07163 × 1025 s-2 frequency-chirp rates, temporal solitons with durations from 139 to 155 fs and Gaussian shapes can be obtained. The corresponding conversion efficiency is greater than 40%.

© 2001 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices

History
Original Manuscript: January 14, 2000
Revised Manuscript: June 12, 2000
Published: March 20, 2001

Citation
Tiejun Zhang, Koichi Yamakawa, Makoto Aoyama, and Motoki Yonemura, "Temporal solitons in second-harmonic generation with a noncollinear phase-mismatching scheme," Appl. Opt. 40, 1417-1422 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-9-1417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. E. Martinez, “A chromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989). [CrossRef]
  2. T. Zhang, M. Yonemura, “Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals,” Appl. Opt. 37, 1647–1650 (1998). [CrossRef]
  3. R. J. Gehr, M. W. Kimmel, A. V. Smith, “Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β-BaB2O4,” Opt. Lett. 23, 1298–1300 (1998). [CrossRef]
  4. A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991). [CrossRef]
  5. Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990). [CrossRef] [PubMed]
  6. T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996). [CrossRef]
  7. T. Zhang, Y. Kato, H. Daido, “Numerical study of fourth-harmonic generation of a picosecond laser pulse with time predelay,” J. Opt. Soc. Am. B 13, 1166–1178 (1996). [CrossRef]
  8. G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997). [CrossRef]
  9. R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, A. Varanavicius, “Generation of compressed 600–720-nm tunable femtosecond pulses by transient frequency mixing in a β-barium borate crystal,” Opt. Lett. 21, 216–218 (1996). [CrossRef] [PubMed]
  10. A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danielius, A. Piskarskas, “Nonlinear second-harmonic pulse compression with titles pulses,” Opt. Lett. 22, 1071–1073 (1997). [CrossRef] [PubMed]
  11. A. Dubietis, G. Valiulis, R. Danielius, A. Piskarskas, “Fundamental-frequency pulse compression through cascaded second-order processes in a type II phase-matched second-harmonic generator,” Opt. Lett. 21, 1262–1264 (1996). [CrossRef] [PubMed]
  12. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998). [CrossRef]
  13. G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, P. Di Trapani, “Temporal solitons in χ(2) materials with titled pulses,” J. Opt. Soc. Am. B 16, 722–731 (1999). [CrossRef]
  14. T. R. Zhang, H. R. Choo, M. C. Downer, “Phase and group velocity matching for second harmonic generation of femtosecond pulses,” Appl. Opt. 29, 3927–3933 (1990). [CrossRef] [PubMed]
  15. T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998). [CrossRef]
  16. R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990). [CrossRef]
  17. A. C. L. Boscheron, C. J. Sauteret, A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351-nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13, 818–826 (1996). [CrossRef]
  18. K. Osvay, I. N. Ross, “Broadband sum-frequency generation by chirp-assisted group-velocity matching,” J. Opt. Soc. Am. B 13, 1431–1438 (1996). [CrossRef]
  19. T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000). [CrossRef]
  20. E. Ibragimov, A. Struthers, “Three-wave solution interaction of ultrashort pulses in quadratic media,” J. Opt. Soc. Am. B 14, 1472–1479 (1997). [CrossRef]
  21. M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited