OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1450–1458

Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing

J. Scott Tyo and Theodore S. Turner, Jr.  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1450-1458 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (3060 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An imaging, variable-retardance, Fourier-transform spectropolarimeter is presented that is capable of creating spectropolarimetric images of scenes with independent characterization of spatial, spectral, and polarimetric information. The device has a spectral resolution of ∼225 cm-1, making it truly hyperspectral in nature. Images of canonical targets such as spheres and cylinders obtained in a laboratory setup are presented. The results demonstrate the capability of developing systems to collect spectropolarimetric data of field images by use of the concept of pushbroom scanning and serial collection of polarimetric information. Further development of a parallelized collection strategy would allow the collection of near-real-time images of real-world targets.

© 2001 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: April 27, 2000
Revised Manuscript: November 6, 2000
Published: March 20, 2001

J. Scott Tyo and Theodore S. Turner, "Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing," Appl. Opt. 40, 1450-1458 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Cheng, J. C. Mahoney, G. Reyes, “Target detection using an AOTF hyperspectral imager,” in Optical Pattern Recognition V, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2237, 251–259 (1994). [CrossRef]
  2. J. S. Tyo, M. P. Rowe, E. N. Pugh, N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996). [CrossRef] [PubMed]
  3. M. P. Silverman, W. Strange, “Object delineation within turbid media by backscattering of phase-modulated light,” Opt. Commun. 144, 7–11 (1997). [CrossRef]
  4. P.-Y. Gerligand, R. A. Chipman, E. A. Sornsin, M. H. Smith, “Polarization signatures of spherical and conical targets measured by Mueller matrix imaging polarimetry,” in Polarization Measurement, Analysis, and Remote Sensing, D. H. Goldstein, R. A. Chipman, eds., Proc. SPIE3121, 63–73 (1997). [CrossRef]
  5. T. S. Turner, M. R. Hawks, “Ruggedized portable Fourier transform spectrometer for hyperspectral imaging applications,” in Remote Sensing for Agriculture, Forestry, and Natural Resources, E. T. Engman, G. Guyot, M. Marino, eds., Proc. SPIE2585, 222–232 (1995). [CrossRef]
  6. T. S. Turner, K. W. Peters, J. S. Tyo, “Portable visible imaging spectro-polarimeter for remote sensing applications,” in Sensors, Systems, and Next-Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 223–230 (1998). [CrossRef]
  7. J. S. Tyo, T. S. Turner, “Imaging spectropolarimeters for use in visible and infrared remote sensing,” in Imaging Spectrometry V, M. Descour, S. Shen, eds., Proc. SPIE3753, 214–225 (1999). [CrossRef]
  8. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985). [CrossRef] [PubMed]
  9. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  10. L. J. Rickard, R. Basedow, E. Zalewske, P. R. Silvergate, M. Landers, “HYDICE: an airborne system for hyperspectral imaging,” in Imaging Spectrometry for Terrestrial Environments, G. Vane, ed., Proc. SPIE1937, 173–179 (1993). [CrossRef]
  11. See, for example, R. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1996), Vol. 2, pp. 22.10–22.12.
  12. L. J. Otten, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, D. S. Fronterhouse, R. Grotbeck, “On board spectral imager data processor,” in Imaging Spectrometry V, M. R. Descour, S. S. Shen, eds., Proc. SPIE3753, 86–94 (1999). [CrossRef]
  13. J. S. Tyo, E. N. Pugh, N. Engheta, “Colorimetric representations for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998). [CrossRef]
  14. D. S. Sabatke, M. R. Descour, E. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  15. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable retardance-polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  16. G. D. Bernard, R. Wehner, “Functional similarities between polarization and color vision,” Vision Res. 17, 1019–1028 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited