OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1514–1524

Light-transmittance predictions under multiple-light-scattering conditions. I. Direct problem: hybrid-method approximation

Marek Czerwiński, Janusz Mroczka, Thierry Girasole, Gérard Gouesbet, and Gérard Gréhan  »View Author Affiliations


Applied Optics, Vol. 40, Issue 9, pp. 1514-1524 (2001)
http://dx.doi.org/10.1364/AO.40.001514


View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our aim is to present a method of predicting light transmittances through dense three-dimensional layered media. A hybrid method is introduced as a combination of the four-flux method with coefficients predicted from a Monte Carlo statistical model to take into account the actual three-dimensional geometry of the problem under study. We present the principles of the hybrid method, some exemplifying results of numerical simulations, and their comparison with results obtained from Bouguer–Lambert–Beer law and from Monte Carlo simulations.

© 2001 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: December 23, 1999
Revised Manuscript: August 4, 2000
Published: March 20, 2001

Citation
Marek Czerwiński, Janusz Mroczka, Thierry Girasole, Gérard Gouesbet, and Gérard Gréhan, "Light-transmittance predictions under multiple-light-scattering conditions. I. Direct problem: hybrid-method approximation," Appl. Opt. 40, 1514-1524 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-9-1514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, London, 1950).
  2. B. Maheu, J. N. Le Toulouzan, G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef]
  3. M. Czerwiński, J. Mroczka, “4 flux model in real disperse media examination: the results of computer simulation,” in Proceedings on Computer Added Metrology (Polish Academy of Sciences, Warsaw, Poland, 1997), pp. 275–282.
  4. B. Maheu, J. P. Briton, G. Gouesbet, “Four flux model and a Monte-Carlo code: comparisons between two simple and complementary tools for multiple scattering calculations,” Appl. Opt. 28, 22–24 (1989). [CrossRef] [PubMed]
  5. G. Gouesbet, B. Maheu, J. N. Letoulouzan, “Simulation of particle multiple scattering and applications to particle diagnostics,” in Heat Transfer in Radiating and Combusting Systems, M. G. Carvalho, F. Lockwood, J. Taine, eds. (Springer-Verlag, New York, 1991), pp. 173–185. [CrossRef]
  6. B. Maheu, G. Gouesbet, “Four flux models to solve the scattering transfer equation: special cases,” Appl. Opt. 25, 1122–1128 (1984). [CrossRef]
  7. Y. P. Wang, Z. S. Wu, K. F. Ren, “Four flux model with adjusted average crossing parameter to solve the scattering transfer equation,” Appl. Opt. 28, 24–26 (1989). [CrossRef] [PubMed]
  8. G. Gouesbet, B. Maheu, G. Gréhan, “Single scattering characteristics of volume elements in coal clouds,” Appl. Opt. 22, 2038–2050 (1983). [CrossRef] [PubMed]
  9. K. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  10. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  11. P. Chylek, “Mie scattering into the backward hemisphere,” J. Opt. Soc. Am. 63, 1467–1471 (1974). [CrossRef]
  12. P. Debye, “Der Lichtdruck auf Kugeln von beliebigen Material,” Ann. Phys. (Leipzig) 4, 57–136 (1909). [CrossRef]
  13. B. Maheu, J. P. Briton, G. Gréhan, G. Gouesbet, “Monte-Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9, 52–58 (1992). [CrossRef]
  14. C. Rozé, B. Maheu, G. Gréhan, J. Menard, “Evaluations of the distance of visibility in a foggy atmosphere by Monte-Carlo simulation,” Atmos. Environ. 25, 769–775 (1994). [CrossRef]
  15. M. Czerwiński, J. Mroczka, K. F. Ren, T. Girasole, G. Gréhan, G. Gouesbet, “Scattered light predictions under multiple scattering conditions with application to inversion scheme,” in Proceedings of the Seventh European Symposium on Particle Characterisation (NurnbergMesse GmbH, Nürnberg, Germany, 1998).
  16. M. Czerwiński, J. Mroczka, T. Girasole, G. Gréhan, G. Gouesbet, “Hybrid method to predict scattered light transmittances under multiple scattering conditions,” in Proceedings of the Fifth International Congress on Optical Particle Sizing, (University of Minnesota, Minneapolis, Minn., 1998).
  17. M. Czerwiński, “Modélisation de la turbidité spectrale d’un milieu multidiffusif et son application au problème inverse,” Ph.D. dissertation (Université de Rouen, Rouen, France, 1998).
  18. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998). [CrossRef]
  19. W. E. Vargas, “Two-flux transfer model under nonisotropic propagating diffuse radiation,” Appl. Opt. 38, 1077–1085 (1999). [CrossRef]
  20. W. E. Vargas, “Diffuse radiation intensity propagating through a particulate slab,” J. Opt. Soc. Am. 16, 1362–1372 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited