OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 108–115

Correlation Image Velocimetry: A Spectral Approach

Stéphane Roux, François Hild, and Yves Berthaud  »View Author Affiliations

Applied Optics, Vol. 41, Issue 1, pp. 108-115 (2002)

View Full Text Article

Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method, believed to be new, is introduced to evaluate displacement fields from the analysis of a deformed image compared with a reference image. In contrast to standard methods, which determine a piecewise constant displacement field, the present method gives direct access to spectral decomposition of the displacement field. A minimization procedure is derived and used twice: first, to determine an affine displacement field and, then, the spectral components of the residual displacement. Although the method is applicable to any space dimension, only cases dealing with one-dimensional signals are reported: First, a purely synthetic example is discussed to estimate the intrinsic performance of the method, and a second case deals with a profile extracted from a sample of compressed glass wool.

© 2002 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

Stéphane Roux, François Hild, and Yves Berthaud, "Correlation Image Velocimetry: A Spectral Approach," Appl. Opt. 41, 108-115 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Lagarde, ed., Proceedings of the IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, in Vol. 82 of Solid Mechanics and its Applications (Kluwer, Dordrecht, The Netherlands, 2000).
  2. M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rastogi, ed., Top. Appl. Phys. 77, 323–372 (2000).
  3. L. Humbert, V. Valle, and M. Cottron, “Experimental determination and empirical representation of out-of-plane displacements in a cracked elastic plate loaded in mode I,” Int. J. Solids Struct. 37, 5493–5504 (2000).
  4. F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube are preparing a manuscript to be called “Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation.”
  5. C. G’Sell, J.-M. Hiver, A. Dahnoun, and A. Souahi, “Video-controlled tensile testing of polymers and metals beyond the necking point,” J. Mater. Sci. 27, 5031–5039 (1992).
  6. L. Chevalier, S. Calloch, F. Hild, and Y. Marco, “Digital image correlation used to analyze the multiaxial behavior of rubber-like materials,” Eur. J. Mech. A Solids 20, 169–187 (2001).
  7. D. Choi, J. L. Thorpe, and R. Hanna, “Image analysis to measure strain in wood and paper,” Wood Sci. Technol. 25, 251–262 (1991).
  8. J. Desrues, J. Lanier, and P. Stutz, “Localization of the deformation in tests on sand sample,” Eng. Fract. Mech. 21, 909–921 (1985).
  9. W. Merzkirch, Flow Visualization (Academic, New York, 1987).
  10. T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature (London) 270, 45–47 (1977).
  11. C. J. D. Pickering and N. A. Halliwell, “Speckle laser in fluid flows: signal recovery with two-step processing,” Appl. Opt. 23, 1128–1129 (1984).
  12. S. Mguil, F. Morestin, and M. Brunet, “Mesure des déformations par corrélation directe d’images numériques,” in Photomécanique 98 (GAMAC, Paris, 1998), pp. 361–368 (in French).
  13. F. Hild, J.-N. Périé, and M. Coret, “Mesure de champs de déplacements 2D par corrélation d’images numériques: correli2D” (in French), Internal Rep. No. 230 (LMT-Cachan, Cachan, France, 1999).
  14. P. K. Rastogi, ed., Photomechanics, Top. Appl. Phys. 77 (2000).
  15. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
  16. T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Petters, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 3, 232–244 (1985).
  17. D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
  18. Y. Berthaud, J. Scholz, and J. Thesing, “Méthodes optiques et acoustiques de mesures des caractéristiques mécaniques,” in Proceedings of Colloque national MECAMAT “Mécanismes et mécanique des grandes déformations,” (in French) (MECAMAT, Aussois, France, 1996), pp. 77–80.
  19. F. P. Chiang, Q. Wang, and F. Lehman, “New developments in full-field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures, Special Technical Publications (American Society for Testing Materials, Philadelphia, Pa., 1997), Vol. 1318, pp. 156–169.
  20. H. Huang, H. Fiedler, and J. Wang, “Limitation and improvement of PIV; Part I: Limitation of conventional techniques due to deformation of image patterns,” Exp. Fluids 15, 168–174 (1993).
  21. H. Huang, H. Fiedler, and J. Wang, “Limitation and improvement of PIV. II. Particle image distortion, a novel technique,” Exp. Fluids 15, 263–273 (1993).
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University, Cambridge, Mass., 1992).
  23. P. Tokumaru and P. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).
  24. B. Wagne, S. Roux, and F. Hild are preparing a manuscript to be called “Spectral approach to displacement evaluation from image analysis.”
  25. E. Bouzereau, “A review of imaging velocimetry methods,” Internal Rep. (École Nationale Supérieure des Techniques Avancées, Palaiseau, France, 2000).
  26. Matlab 5.3, The MathWorks, Inc., http://www.mathworks.com (1999).
  27. P. Jacquot and P. K. Rastogi, “Influence of out-of-plane deformation and its elimination in white light speckle photography,” Opt. Lasers Eng. 2, 33–55 (1981).
  28. M. Baudequin, G. Ryschenkow, and S. Roux, “Nonlinear elastic behavior of light fibrous materials,” Eur. Phys. J. B 12, 157–162 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited