OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 116–124

Measurements of the corneal birefringence with a liquid-crystal imaging polariscope

Juan M. Bueno and Fernando Vargas-Martín  »View Author Affiliations

Applied Optics, Vol. 41, Issue 1, pp. 116-124 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An imaging polariscope has been used to analyze the spatially resolved polarization properties of living human corneas. The apparatus is a modified double-pass setup, incorporating a liquid-crystal modulator in the analyzer pathway. Keeping the incident polarization state fixed (first passage), we recorded a series of three images of the pupil’s plane corresponding to independent polarization states of the analyzer unit. Azimuth and retardation at each point of the cornea were calculated from those images. Results show that the magnitude of retardation increases along the radius toward the periphery of the cornea. Left–right eye symmetry in retardation was also found. Maps of azimuth indicate that the direction of the corneal slow axis is nasally downward.

© 2002 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.5370) Vision, color, and visual optics : Physiological optics

Original Manuscript: December 11, 2000
Revised Manuscript: June 4, 2001
Published: January 1, 2002

Juan M. Bueno and Fernando Vargas-Martín, "Measurements of the corneal birefringence with a liquid-crystal imaging polariscope," Appl. Opt. 41, 116-124 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Brewster, “Experiments on the de-polarization of light as exhibited by various mineral, animal and vegetable bodies with a reference of the phenomena to the general principles of polarization,” Philos. Trans. R. Soc. London 1, 21–53 (1815).
  2. D. M. Maurice, “The cornea and sclera,” in The Eye, H. Davson, ed. (Academic, Orlando, Fla., 1984), pp. 1–158. [CrossRef]
  3. G. J. van Blokland, “The optics of the human eye studied with respect to polarized light,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1986).
  4. G. Boehm, “Ueber maculare (Haidingersche) Polarisations buschel und ueber einen polarisationoptischen Fehler des Auges,” Acta Ophthalmol. 18, 109–169 (1940). [CrossRef]
  5. H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica 19, 419–432 (1953). [CrossRef]
  6. E. J. Naylor, A. Stanworth, “Retinal pigment and the Haidinger effect,” J. Physiol. 124, 543–552 (1954). [PubMed]
  7. A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthal. 34, 201–211 (1950). [CrossRef]
  8. L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981). [CrossRef] [PubMed]
  9. G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987). [CrossRef] [PubMed]
  10. B. Pelz, C. Weschenmoser, S. Goelz, J. P. Fischer, R. O. W. Burk, J. F. Bille, “In vivo measurement of the retinal birefringence with regard on corneal effects using an electro-optical ellipsometer,” in Lasers in Ophthalmology IV, R. Birngruber, A. F. Fercher, P. Sourdille, eds., Proc. SPIE2930, 92–101 (1996).
  11. J. W. Jaronski, H. T. Kasprzak, D. Haszcz, J. Zagorski, “Investigation of the corneal structure by use of phase stepping imaging polarimetry,” in Proceedings of the European Optical Society Topical Meeting in Physiological Optics (European Optical Society, Wroclaw, Poland, 1999), pp. 21–22.
  12. J. W. Jaronski, H. T. Kasprzak, “Generalized algorithm for photoelastic measurements based on phase-stepping imaging polarimetry,” Appl. Opt. 38, 7018–7025 (1999). [CrossRef]
  13. D. S. Greenfield, R. W. Knighton, X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000). [CrossRef] [PubMed]
  14. R. W. Knighton, X.-R. Huang, D. S. Greenfield, “Linear birefringence measured in the central corneas of a normal population,” Invest. Ophthalmol. Visual Sci. (Suppl.) 42, S131 (2001).
  15. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985). [CrossRef] [PubMed]
  16. J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999). [CrossRef]
  17. J. M. Bueno, “Measurement of parameters of polarization in the living human eye using imaging polarimetry,” Vision Res. 40, 3791–3799 (2000). [CrossRef] [PubMed]
  18. F. A. Bettelheim, K. Mahadeva, “An interpretation of small-angle light-scattering patterns of human cornea,” Invest. Ophthalmol. Visual Sci. 16, 233–236 (1977).
  19. L. J. Bour, “Polarized light and the eye,” in Vision Optics and Instrumentation, W. N. Charman, ed. (CRC Press, Boston, Mass., 1991), Vol. 1, Chap. 13.
  20. R. L. McCally, W. J. Green, W. A. Chistens-Barry, D. J. Donohue, R. A. Farrell, “Birefringence properties of human and rabbit cornea: polarization rotation component,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S1007 (1996).
  21. R. A. Farrell, R. L. McCally, “Corneal lamelar birefringence—effects of fibril anisotropic permittivity on retardation,” Invest. Ophthalmol. Visual Sci. (Suppl.) 38, S505 (1997).
  22. D. G. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. (Chicago) 25, 391–400 (1941). [CrossRef]
  23. G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 65, 398–404 (1968). [PubMed]
  24. W. T. Cope, M. L. Wolbarsht, B. S. Yamanashi, “The corneal polarization cross,” J. Opt. Soc. Am. 68, 1139–1141 (1978). [CrossRef] [PubMed]
  25. Y. Ichihashi, M. H. Khin, K. Ishikawa, T. Hatada, “Birefringence effect of the in vivo cornea,” Opt. Eng. 34, 693–699 (1995). [CrossRef]
  26. J. Santamaría, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987). [CrossRef] [PubMed]
  27. American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, Fla., 1993).
  28. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216–222 (2000). [CrossRef]
  29. D. S. Kliger, J. W. Lewis, C. E. Randall, “Polarized Light in Optics and Spectroscopy (Academic, San Diego, Calif., 1990).
  30. W. A. Shurcliff, “Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).
  31. F. Vargas-Martín, “Óptica adaptativa en oftalmoscopia: corrección de las aberraciones del ojo mediante un modulador espacial de cristal líquido,” Tesis Doctoral (Universidad de Murcia, Murcia, Spain, 1999).
  32. R. C. Thompson, J. R. Bottinger, E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1980). [CrossRef] [PubMed]
  33. E. Bernabeu, J. J. Gil, “An experimental device for the dynamic determination of Mueller matrices,” J. Opt. (Paris) 16, 139–141 (1985). [CrossRef]
  34. D. H. Goldstein, R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7, 693–700 (1990). [CrossRef]
  35. T. Fendrich, “Fourierellipsometrie,” Diplomarbeit (Universität Heidelberg, Heidelberg, Germany, 1991).
  36. F. Delplancke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36, 5388–5395 (1997). [CrossRef] [PubMed]
  37. C. Wu, S. Wu, “Liquid-crystal-based switchable polarizers for sensor protection,” Appl. Opt. 34, 7221–7227 (1995). [CrossRef] [PubMed]
  38. C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995). [CrossRef]
  39. S. Krishnan, P. C. Nordine, “Fast ellipsometry and Mueller matrix ellipsometry using the division-of-amplitude photopolarimeter,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 152–156 (1996). [CrossRef]
  40. J. Liu, R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997). [CrossRef] [PubMed]
  41. C. Ye, E. Keränen, “Nonmechanical rotation of a linear polarizer preceding a photodetector,” J. Opt. Soc. Am. A 14, 682–685 (1997). [CrossRef]
  42. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997). [CrossRef] [PubMed]
  43. F. Vargas-Martín, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  44. Z. Zhuang, S.-W. Suh, J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24, 694–696 (1999). [CrossRef]
  45. J. M. Bueno, P. Artal, “Polarization and retinal image quality estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001). [CrossRef]
  46. J. M. Bueno, “Depolarization effects in the human eye,” Vision Res. 41, 2687–2696 (2001). [CrossRef] [PubMed]
  47. A. Stanworth, E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–169 (1953).
  48. J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthal. Physiol. Opt. 21, 384–392 (2001). [CrossRef]
  49. D. Kaplan, F. A. Bettelheim, “On the birefringence of bovine cornea,” Exp. Eye Res. 13, 219–226 (1972). [CrossRef] [PubMed]
  50. D. Post, J. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966). [CrossRef] [PubMed]
  51. C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma” Nature (London) 250, 163–164 (1974). [CrossRef]
  52. R. L. McCally, R. A. Farrell, “Structural implications of the small-angle light scattering from the cornea,” Exp. Eye Res. 34, 99–113 (1982). [CrossRef] [PubMed]
  53. D. J. Donohue, B. J. Stoyanov, R. L. McCally, R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12, 1425–1438 (1995). [CrossRef]
  54. G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986). [CrossRef] [PubMed]
  55. S. A. Burns, S. Wu, S. F. C. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995). [CrossRef]
  56. J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. (Suppl.) 42, S161 (2001).
  57. M. Born, E. Wolf, “Principles of Optics (Pergamon Press, New York, 6th ed., 1980).
  58. D. Fonn, J. H. Wang, T. L. Simpson, “Topographical thickness of the epithelium and the total cornea in living human eyes using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 41, S675 (2000).
  59. S. J. Haake, E. A. Patterson, “Photoelastic anaalysis of frozen stressed specimens using spectral contents analysis,” Exp. Mech. 32, 266–272 (1992). [CrossRef]
  60. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  61. S. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  62. J. H. Wang, “Corneal and epithelial thickness changes associated with contact lens wear and eye closure comparing optical coherence tomography and optical pachometry,” M.S. thesis (University of Waterloo, Waterloo, Ontario, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited