OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 154–171

Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components

Angela Duparré, Josep Ferre-Borrull, Stefan Gliech, Gunther Notni, Jörg Steinert, and Jean M. Bennett  »View Author Affiliations


Applied Optics, Vol. 41, Issue 1, pp. 154-171 (2002)
http://dx.doi.org/10.1364/AO.41.000154


View Full Text Article

Enhanced HTML    Acrobat PDF (4322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.

© 2002 Optical Society of America

OCIS Codes
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(240.5770) Optics at surfaces : Roughness
(290.5820) Scattering : Scattering measurements
(290.5880) Scattering : Scattering, rough surfaces

History
Original Manuscript: April 11, 2001
Revised Manuscript: August 31, 2001
Published: January 1, 2002

Citation
Angela Duparré, Josep Ferre-Borrull, Stefan Gliech, Gunther Notni, Jörg Steinert, and Jean M. Bennett, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components," Appl. Opt. 41, 154-171 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-1-154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), Chap. 3 and references therein.
  2. Standard Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering, ASTM Doc. F1048–87 (American Society for Testing and Materials, Philadelphia, Pa., 1987).
  3. J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985). [CrossRef]
  4. Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces, ASTM Doc. E1392–90 (American Society for Testing and Materials, Philadelphia, Pa., 1990).
  5. T. A. Leonard, M. Pantoliano, “BRDF round robin,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. SPIE967, 226–235 (1989). [CrossRef]
  6. T. A. Leonard, “Standardization of optical scatter measurements,” in Stray Radiation in Optical Systems, R. P. Breault, ed., Proc. SPIE1331, 188–194 (1990). [CrossRef]
  7. P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000). [CrossRef]
  8. See Ref. 1, pp. 58–64.
  9. J. C. Stover, ed., Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the Press Monographs (SPIE, Bellingham, Wash., 1995).
  10. E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991). [CrossRef]
  11. J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993). [CrossRef] [PubMed]
  12. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988). [CrossRef] [PubMed]
  13. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998). [CrossRef]
  14. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).
  15. T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).
  16. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996). [CrossRef] [PubMed]
  17. A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning-force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily, ed., Vol. CR72 of SPIE Critical Reviews of Optical Science and Technology (SPIE, Bellingham, Wash., 1999), pp. 213–231.
  18. R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, L. Mattsson, “Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,” Appl. Opt. 31, 1426–1435 (1992). [CrossRef] [PubMed]
  19. G. Nomarski, “Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).
  20. G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).
  21. See Ref. 1, pp. 7–9.
  22. R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972). [CrossRef]
  23. G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).
  24. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982). [CrossRef]
  25. G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986). [CrossRef] [PubMed]
  26. D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, New York, 1991).
  27. S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and SFM (VCH, Weinheim, Germany, 1995). [CrossRef]
  28. Digital Instruments, a division of Veeco Process Metrology, 112 Robin Hill Road, Goleta, Calif. 93117; http://www.di.com .
  29. A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).
  30. C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996). [CrossRef]
  31. Taylor Hobson Limited, P.O. Box 36, 2 New Star Road, Leicester LE4 7JQ UK (U.S. address: 2100 Golf Road, Suite 350, Rolling Meadows, Ill. 60008-4231).
  32. J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981). [CrossRef] [PubMed]
  33. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987). [CrossRef]
  34. G. S. Kino, S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990). [CrossRef] [PubMed]
  35. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990). [CrossRef] [PubMed]
  36. R.-J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997). [CrossRef]
  37. R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998). [CrossRef]
  38. C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, Chap. 1, pp. 1–98.
  39. T. Wilson, “Optical aspects of confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 3.
  40. N. J. McCormick, “Confocal scanning optical microscopy,” in Surface Characterization, A User’s Sourcebook, D. Brune, R. Hellborg, H. J. Whitlow, O. Hunderi, eds. (Wiley-VCH, Weinheim, Germany, 1997), pp. 57–76. [CrossRef]
  41. Carl Zeiss Jena GmbH, Carl-Zeiss Promenade 1a, D-07745 Jena, Germany; http://www.zeiss.de .
  42. See Ref. 1, pp. 28–37, 62–67.
  43. J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994). [CrossRef]
  44. A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.
  45. Optics and Optical Instruments—Lasers and Laser-Related Equipment—Test Methods for Radiation Scattered by Optical Components, ISO/FDIS 13696, Technical Committee ISO/TC 172/SC9/WG6, Final Draft Standard (International Organization for Standardization, Geneva, Switzerland, 1998).
  46. D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994). [CrossRef]
  47. A. Duparré, S. Gliech, “Quality assessment from supersmooth to rough surfaces by multiple wavelength light scattering measurement,” in Scattering and Surface Roughness, Z. Gu, A. A. Maradudin, eds., Proc. SPIE3141, 57–64 (1997). [CrossRef]
  48. S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000). [CrossRef]
  49. We used 99% reflectance Spectralon, Labsphere Inc., subsidiary of X-Rite, Inc., P.O. Box 70, North Sutton, N.H. 03260-0070; http://www.labsphere.com .
  50. J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995). [CrossRef] [PubMed]
  51. E. L. Church, P. Z. Takacs, “BASIC program for power spectrum estimation,” Informal Rep. 490.35 (Brookhaven National Laboratory, Upton, N.Y., 1993).
  52. J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).
  53. J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979). [CrossRef]
  54. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979). [CrossRef]
  55. P. Bousquet, F. Flory, P. Roche, “Scattering from multilayer films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981). [CrossRef]
  56. See Ref. 1, pp. 66–67.
  57. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).
  58. O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994). [CrossRef]
  59. J. M. Bennett, “Surface roughness measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House, Norwood, Mass., 1997), Chap. 12, pp. 341–367.
  60. J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Balter, D. T. Hobbs, “Scanning force microscope as a tool for studying optical surfaces,” Appl. Opt. 34, 213–230 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited