OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 172–181

Optical design of a stigmatic extreme-ultraviolet spectroscopic system for emission and absorption studies of laser-produced plasmas

Luca Poletto, Piergiorgio Nicolosi, and Giuseppe Tondello  »View Author Affiliations

Applied Optics, Vol. 41, Issue 1, pp. 172-181 (2002)

View Full Text Article

Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design of a stigmatic spectroscopic system for diagnostics of laser-produced plasmas in the 2.5–40-nm region is presented. The system consists of a grazing-incidence toroidal mirror that focuses the radiation emitted by a laser-produced plasma onto the entrance slit of a spectrograph. The latter has a grazing-incidence spherical variable-line-spaced grating with flat-field properties coupled to a spherical focusing mirror that compensates for the astigmatism. The mirror is crossed with respect to the grating; i.e., it is mounted with its tangential plane coincident with the equatorial plane of the grating. The spectrum is acquired by an extreme-UV- (EUV-) enhanced CCD detector with high quantum efficiency. This stigmatic design also has spectral and spatial resolution capability for extended sources: The spectral resolution is also preserved for off-plane points, whereas the spatial resolution decreases for points far from the optical axis. The expected performance is presented and compared with that of a stigmatic design with a plane variable-line-spaced grating illuminated in converging light.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.1000) Optical design and fabrication : Aberration compensation
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Luca Poletto, Piergiorgio Nicolosi, and Giuseppe Tondello, "Optical design of a stigmatic extreme-ultraviolet spectroscopic system for emission and absorption studies of laser-produced plasmas," Appl. Opt. 41, 172-181 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, Cambridge, UK, 1997).
  2. R. Kauffmann, “X-ray radiation from laser plasma,” in Physics of Laser Plasma, Handbook of Plasma Physics, A. Rubenchik and S. Witkowski, eds. (North Holland, Amersterdam, 1991), p. 111.
  3. The Opacity Project, Vol. 1, compiled by the Opacity Project Team (Institute of Physics, Bristol, UK, 1995).
  4. S. N. Nahar and A. K. Pradhan, “Unified treatment of electron-ion recombination in the close-coupling approximation,” Phys. Rev. A 49, 1816–1835 (1994).
  5. S. N. Nahar and A. K. Pradhan, “Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and nitrogen,” Astrophys. J. Suppl. 111, 339–355 (1997).
  6. M. C. E. Huber and R. J. Sandeman, “The measurement of oscillator strengths,” Rep. Prog. Phys. 49, 397–490 (1986).
  7. F. J. Wuilleumier, J.-M. Bizau, D. Cubaynes, B. Rouvellou, and L. Journel, “Present status of inner-shell photoionization studies in singly and multiply charged atomic ions,” Nucl. Instrum. Methods Phys. Res. B 87, 190–197 (1994).
  8. J. M. Bridges, C. L. Cromer, and T. J. McIlrath, “Laser produced plasma x-ray ultraviolet (XUV) radiation source,” X-Ray Calibration: Techniques, Sources and Detectors, P. Lee and P. D. Rockett, eds., Proc. SPIE 689, 19–25 (1986).
  9. R. M. More, “Atomic physics of laser produced plasma,” in Physics of Laser Plasma, Handbook of Plasma Physics, A. Rubenchik and S. Witkowski, eds. (North Holland, Amsterdam, 1991), pp. 63–110.
  10. E. T. Kennedy and P. K. Carroll, “Laser produced plasmas,” Contemp. Phys. 22, 61–96 (1981).
  11. J. T. Costello, J. P. Mosnier, E. T. Kennedy, P. K. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. 34, 77–92 (1991).
  12. E. T. Kennedy, J. T. Costello, and J. P. Mosnier, “New experiments in photoabsorption studies of singly and multiply charged ions,” J. Electon. Spect. Rel. Phen. 79, 283–288 (1996)
  13. P. Nicolosi, E. Jannitti, and G. Tondello, “A review on experimental studies on the photoabsorption spectra of low Z ions,” J. Phys. IV 1, 89–98 (1991).
  14. E. Jannitti, M. Gaye, M. Mazzoni, P. Nicolosi, and P. Villoresi, “K-shell photoabsorption spectrum of C II,” Phys. Rev. A 47, 4033–4041 (1993).
  15. E. Jannitti, P. Nicolosi, P. Villoresi, and F. Xianping, “Measurement of the K-shell photoionization cross section of C IV through the L-shell photoabsorption spectra,” Phys. Rev. A 51, 314–323 (1995).
  16. P. Nicolosi and P. Villoresi, “Experimental measurement of the CII L-shell photoabsorption spectrum,” Phys. Rev. A 58, 4985–4988 (1998).
  17. H. Kieldsen, F. Folkmann, J. E. Hansen, H. Knudsen, M. S. Rasmussen, J. B. West, and T. Andersen, “Measurement of the absolute photoionization cross section of C+ near threshold,” Astrophys. J. 524, L143–l146 (1999).
  18. P. Villoresi, P. Nicolosi, and M. G. Pelizzo, “Design and experimental characterization of a high-resolution instrument for measuring the extreme-UV absorption of laser plasmas,” Appl. Opt. 39, 85–93 (2000).
  19. L. Poletto, A. Boscolo, and G. Tondello, “Characterization of a charge-coupled-device detector in the 1100–0.14-nm (1-eV to 9-keV) spectral region,” Appl. Opt. 38, 29–36 (1999).
  20. O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, and M. Lampton, “Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates,” Appl. Opt. 26, 3607–3614 (1987).
  21. R. M. Rideout, J. F. Pearson, G. W. Fraser, J. E. Lees, A. N. Brunton, N. P. Bannister, A. Kenter, and R. Kraft, “Synchrotron measurements of the absolute x-ray quantum efficiency of Cs-I coated microchannel plates,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX, O. W. Siegmund and M. A. Gummin, eds., Proc. SPIE 3445, 384–392 (1998).
  22. T. Harada and T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
  23. T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 819–825 (1983).
  24. P. Fan, Z. Zhang, J. Zhou, R. Jin, Z. Xu, and X. Guo, “Stigmatic grazing-incidence flat-field grating spectrograph,” Appl. Opt. 31, 6720–6723 (1992).
  25. I. Woo Choi, J. Ung Lee, and C. Hee Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
  26. P. Kirkpatrick and A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948).
  27. M. Hettrick and S. Bowyer, “Variable line-space gratings: new designs for use in grazing incidence spectrometers,” Appl. Opt. 22, 3921–3932 (1983).
  28. L. Poletto, G. Naletto, and G. Tondello, “Optical design of a grazing incidence spectrometer with varied line-space flat grating for high-order harmonic diagnostics,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, ed., Proc. SPIE 3764, 85–93 (1999).
  29. L. Garifo, A. M. Malvezzi, and G. Tondello, “Grazing incidence spectrograph-monochromator with a focusing toroidal mirror,” Appl. Opt. 18, 1900–1906 (1979).
  30. L. Poletto and G. Tondello, “Design of a high-throughput grazing-incidence flat-field spectrometer,” Appl. Opt. 39, 4000–4006 (2000).
  31. J. A. R. Samson and D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited