OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 245–257

Grazing-incidence Monk–Gillieson monochromator based on surface normal rotation of a varied-line-spacing grating

Masato Koike and Takeshi Namioka  »View Author Affiliations

Applied Optics, Vol. 41, Issue 1, pp. 245-257 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A geometric theory of a grazing-incidence varied-line-spacing plane-grating monochromator system whose scanning is made by a simple grating rotation about the grating normal has been developed for designing Monk–Gillieson monochromators capable of covering an energy range of 0.6–2.5 keV. Analytic expressions are given for the grating equations, focal conditions, dispersion, spectral image shape, and optimization of groove parameters. On the basis of the theory, two monochromator systems have been designed: system I for moderate resolution and system II for relatively high resolution. The validity of the analytic formulas and the expected performance of the designed systems have been evaluated by means of ray tracing. The results show that the analytic formulas are sufficiently accurate for practical applications and that systems I and II would provide resolving power of approximately 1450–600 and 7500–2000, respectively, in the wavelength region of 0.5–2.0 nm.

© 2002 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(300.6170) Spectroscopy : Spectra
(300.6190) Spectroscopy : Spectrometers
(340.0340) X-ray optics : X-ray optics

Original Manuscript: April 24, 2001
Revised Manuscript: July 30, 2001
Published: January 1, 2002

Masato Koike and Takeshi Namioka, "Grazing-incidence Monk–Gillieson monochromator based on surface normal rotation of a varied-line-spacing grating," Appl. Opt. 41, 245-257 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994). [CrossRef]
  2. T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998). [CrossRef]
  3. A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998). [CrossRef]
  4. E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992). [CrossRef]
  5. W. Werner, “The geometric optical aberration theory of diffraction gratings,” Appl. Opt. 6, 1691–1699 (1967). [CrossRef] [PubMed]
  6. W. Werner, “Imaging properties of diffraction gratings,” Ph.D. dissertation (Technische Hogeschool Delft, Delft, The Netherlands, 1970).
  7. C. H. F. Velzel, “A general theory of the aberrations of diffraction gratings and grating like optical instruments,” J. Opt. Soc. Am. 66, 346–353 (1976). [CrossRef]
  8. M. Nevière, D. Maystre, W. R. Hunter, “On the use of classical and conical diffraction mountings for XUV gratings,” J. Opt. Soc. Am. 68, 1106–1113 (1978). [CrossRef]
  9. P. Vincent, M. Nevière, D. Maystre, “X-ray gratings: the GMS mount,” Appl. Opt. 18, 1780–1783 (1979). [CrossRef] [PubMed]
  10. W. Werner, H. Visser, “X-ray monochromator designs based on extreme off-plane grating mountings,” Appl. Opt. 20, 487–492 (1981). [CrossRef] [PubMed]
  11. M. C. Hettrick, “Surface normal rotation: a new technique for grazing-incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992). [CrossRef] [PubMed]
  12. M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28Dec.1993).
  13. G. S. Monk, “A mounting for the plane grating,” J. Opt. Soc. Am. 17, 358–364 (1928). [CrossRef]
  14. A. H. C. P. Gillieson, “A new spectrographic diffraction mounting,” J. Sci. Instrum. 26, 335–339 (1949). [CrossRef]
  15. T. Namioka, M. Seya, “Optical properties of a system consisting of a mirror and a grating,” Appl. Opt. 9, 459–464 (1970). [CrossRef] [PubMed]
  16. T. Kaneko, T. Namioka, M. Seya, “Monk–Gillieson monochromator,” Appl. Opt. 10, 367–381 (1971). [CrossRef] [PubMed]
  17. M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994). [CrossRef]
  18. M. Koike, T. Namioka, “Optimization and evaluation of varied line spacing plane grating monochromators for third-generation synchrotron radiation sources,” J. Electron Spectrosc. Relat. Phenom. 80, 303–308 (1996). [CrossRef]
  19. T. Namioka, M. Koike, D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261–7274 (1994). [CrossRef] [PubMed]
  20. T. Namioka, M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt. 34, 2180–2186 (1995). [CrossRef] [PubMed]
  21. H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998). [CrossRef]
  22. M. Koike, T. Namioka, “Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating,” Appl. Opt. 36, 6308–6318 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited