OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 1 — Jan. 1, 2002
  • pp: 80–87

Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range

Benno Albrecht, Antonio Virgilio Failla, Andreas Schweitzer, and Christoph Cremer  »View Author Affiliations


Applied Optics, Vol. 41, Issue 1, pp. 80-87 (2002)
http://dx.doi.org/10.1364/AO.41.000080


View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For an improved understanding of the structural basis of cellular mechanisms, it is highly desirable to develop methods for a detailed topological analysis of biological nanostructures and their dynamics in the interior of three-dimensionally conserved cells. We present a method of far-field laser fluorescence microscopy to measure relative axial positions of pointlike fluorescent targets and the distance between each target in the range of a few nanometers. The physical principle behind this approach can be extended to the determination of three-dimensional (3D) positions and 3D distances between any number of objects that can be discriminated owing to their spectral signature, thus allowing topological measurements so far regarded to be beyond the capabilities of light microscopy.

© 2002 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(140.3570) Lasers and laser optics : Lasers, single-mode
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy

History
Original Manuscript: February 12, 2001
Published: January 1, 2002

Citation
Benno Albrecht, Antonio Virgilio Failla, Andreas Schweitzer, and Christoph Cremer, "Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range," Appl. Opt. 41, 80-87 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-1-80


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001). [CrossRef]
  2. H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998). [CrossRef]
  3. A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000). [CrossRef] [PubMed]
  4. A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998). [CrossRef]
  5. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000). [CrossRef] [PubMed]
  6. P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).
  7. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996). [CrossRef] [PubMed]
  8. M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996). [CrossRef] [PubMed]
  9. J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992). [CrossRef]
  10. A. Schoenle, M. Glatz, S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000). [CrossRef]
  11. D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000). [CrossRef] [PubMed]
  12. P. Edelmann, C. Cremer, “Improvement of confocal spectral precision distance microscopy (SPDM),” Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 313–320 (2000). [CrossRef]
  13. H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999). [CrossRef] [PubMed]
  14. C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978). [PubMed]
  15. S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994). [CrossRef]
  16. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995). [CrossRef]
  17. M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998). [CrossRef] [PubMed]
  18. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000). [CrossRef] [PubMed]
  20. M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000). [CrossRef]
  21. B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).
  22. B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000). [CrossRef]
  23. B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993). [CrossRef] [PubMed]
  24. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995). [CrossRef]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).
  26. Khoral Research Inc., 6200 Uptown Blvd. N.E., Suite 200, Albuquerque, N. Mex. 87110-4142, http://www.khoral.com .
  27. B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).
  28. R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).
  29. M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).
  30. C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.
  31. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991). [CrossRef] [PubMed]
  32. T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993). [CrossRef] [PubMed]
  33. A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998). [CrossRef] [PubMed]
  34. T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).
  35. B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).
  36. A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited