OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 1835–1840

Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers

Iulian Codreanu and Glenn D. Boreman  »View Author Affiliations

Applied Optics, Vol. 41, Issue 10, pp. 1835-1840 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the influence of the dielectric substrate on the performance of microstrip dipole-antenna-coupled microbolometers. The location, the width, and the magnitude of the resonance of a printed dipole are altered when the dielectric substrate is backed by a ground plane. A thicker dielectric substrate shifts the antenna resonance toward shorter dipole lengths and leads to a stronger and slower detector response. The incorporation of an air layer into the antenna substrate further increases thermal impedance, leading to an even stronger response and shifting the antenna resonance toward longer dipole lengths.

© 2002 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5440) Optical devices : Polarization-selective devices
(230.5750) Optical devices : Resonators

Original Manuscript: September 25, 2001
Revised Manuscript: January 2, 2002
Published: April 1, 2002

Iulian Codreanu and Glenn D. Boreman, "Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers," Appl. Opt. 41, 1835-1840 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975). [CrossRef]
  2. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000). [CrossRef]
  3. N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997). [CrossRef]
  4. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991). [CrossRef]
  5. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).
  6. I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999). [CrossRef]
  7. I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001). [CrossRef]
  8. D. R. Lide, H. P. R. Frederiske, eds., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1996).
  9. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).
  10. H. R. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 749–763.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited