OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 1977–1983

Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage

Stavros G. Demos and Mike Staggs  »View Author Affiliations

Applied Optics, Vol. 41, Issue 10, pp. 1977-1983 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental investigation to evaluate fluorescence microscopy as a tool to detect surface contamination as well as reveal surface damage precursors on optical components for large-aperture laser systems. We performed fluorescence imaging experiments using 351-nm laser excitation, whereas in situ damage testing was performed at laser fluences well below the dielectric breakdown threshold of the pure material. The experimental results demonstrated the potential of this technique to address both aforementioned technical issues.

© 2002 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3380) Lasers and laser optics : Laser materials
(180.2520) Microscopy : Fluorescence microscopy

Original Manuscript: August 21, 2001
Revised Manuscript: November 27, 2001
Published: April 1, 2002

Stavros G. Demos and Mike Staggs, "Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage," Appl. Opt. 41, 1977-1983 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974). [CrossRef]
  2. W. L. Smith, “Laser induced breakdown in optical materials,” Opt. Eng. 17, 489–503 (1978). [CrossRef]
  3. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989). [CrossRef]
  4. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973). [CrossRef] [PubMed]
  5. J. Glass, A. H. Guenther, “Laser induced damage of optical elements—a status report,” Appl. Opt. 12, 637–649 (1973). [CrossRef] [PubMed]
  6. J. A. Ringlien, N. L. Boling, G. Dube, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974). [CrossRef]
  7. R. A. House, J. R. Bettis, A. H. Guenther, “Efficacy of ion polishing optical surfaces,” Appl. Opt. 16, 1486–1488 (1977). [CrossRef]
  8. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982). [CrossRef] [PubMed]
  9. F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000). [CrossRef]
  10. M. D. Feit, A. M. Rubenchik, D. Faux, R. Riddle, A. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 417–424 (1996). [CrossRef]
  11. M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. Torres, L. M. Sheehan, D. W. Camp, M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 365–375 (1998). [CrossRef]
  12. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, N. Nanninga, “Three-dimensional imaging in fluorescence in confocal scanning microscopy,” J. Microsc. 153, 151–159 (1989). [CrossRef] [PubMed]
  13. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Vov, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997). [CrossRef]
  14. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, J. J. De Yoreo, “Microscopic fluorescence imaging of bulk defect clusters in KH2PO4 crystals,” Opt. Lett. 24, 268–270 (1999). [CrossRef]
  15. N. P. Zaitseva, J. J. De Yoreo, M. R. Dehaven, R. L. Vital, K. E. Montgomery, M. Richardson, L. J. Atherton, “Rapid growth of large-scale (40–55 cm) KH2PO4 crystals,” J. Cryst. Growth 180, 255–262 (1997). [CrossRef]
  16. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994). [CrossRef]
  17. A. Salleo, F. Y. Genin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2841 (2001). [CrossRef]
  18. S. G. Demos, M. Staggs, M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited