OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 2059–2064

Wide-field optical coherence tomography: imaging of biological tissues

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberlé, C. Rullière, P. E. Minot, M. Lassègues, and J. E. Surlève Bazeille  »View Author Affiliations


Applied Optics, Vol. 41, Issue 10, pp. 2059-2064 (2002)
http://dx.doi.org/10.1364/AO.41.002059


View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a two-dimensional optical coherence tomography technique with which we were able to obtain multiple longitudinal slices of a biological sample directly in a single Z scan. The system is based on a femtosecond Cr4+:forsterite laser and an infrared camera for wide-field imaging of the sample with a depth resolution of 5 µm. With this imaging apparatus we were able to investigate human skin and mouse ear samples and to observe the different constitutive tissues.

© 2002 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.7050) Medical optics and biotechnology : Turbid media
(320.7090) Ultrafast optics : Ultrafast lasers

History
Original Manuscript: March 19, 2001
Revised Manuscript: September 24, 2001
Published: April 1, 2002

Citation
E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberlé, C. Rullière, P. E. Minot, M. Lassègues, and J. E. Surlève Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. 41, 2059-2064 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-10-2059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  4. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  5. L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997). [CrossRef]
  6. S. Bourquin, P. Seitz, R. P. Salathé, “Optical coherence tomography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001). [CrossRef]
  7. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence tomography,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  8. G. Jonusauskas, J. Oberlé, C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23, 1918–1921 (1998). [CrossRef]
  9. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996). [CrossRef] [PubMed]
  10. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberlé, C. Rullière, “Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000). [CrossRef]
  11. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996). [CrossRef] [PubMed]
  12. S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998). [CrossRef]
  13. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, Berlin, 1996).
  14. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org . [CrossRef]
  15. A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, “Three-dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000), http://www.opticsexpress.org . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited