OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 2074–2078

Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization

Michael Nagel, Peter Haring Bolivar, Martin Brucherseifer, Heinrich Kurz, Anja Bosserhoff, and Reinhard Büttner  »View Author Affiliations


Applied Optics, Vol. 41, Issue 10, pp. 2074-2078 (2002)
http://dx.doi.org/10.1364/AO.41.002074


View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A promising label-free approach for the analysis of genetic material by means of detecting the hybridization of polynucleotides with electromagnetic waves at terahertz (THz) frequencies is presented. Using an integrated waveguide approach, incorporating resonant THz structures as sample carriers and transducers for the analysis of the DNA molecules, we achieve a sensitivity down to femtomolar levels. The approach is demonstrated with time-domain ultrafast techniques based on femtosecond laser pulses for generating and electro-optically detecting broadband THz signals, although the principle can certainly be transferred to other THz technologies.

© 2002 Optical Society of America

OCIS Codes
(170.7160) Medical optics and biotechnology : Ultrafast technology
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3090) Physical optics : Infrared, far

History
Original Manuscript: August 2, 2001
Revised Manuscript: October 31, 2001
Published: April 1, 2002

Citation
Michael Nagel, Peter Haring Bolivar, Martin Brucherseifer, Heinrich Kurz, Anja Bosserhoff, and Reinhard Büttner, "Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization," Appl. Opt. 41, 2074-2078 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-10-2074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Drmanac, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M. Zeremski, J. Snoddy, W. K. Funkhouser, B. Koop, L. Hood, “DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing,” Science 260, 1649–1653 (1993). [CrossRef] [PubMed]
  2. M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris, S. P. Fodor, “Accessing genetic information with high-density DNA arrays,” Science 274, 610–614 (1996). [CrossRef] [PubMed]
  3. R. J. Cho, M. Fromont-Racine, L. Wodicka, B. Feierbach, T. Stearns, P. Legrain, D. J. Lockhart, R. W. Davis, “Parallel analysis of genetic selections using whole genome oligonucleotide arrays,” Proc. Natl. Acad. Sci. USA 95, 3752–3757 (1998). [CrossRef] [PubMed]
  4. H. Ozaki, L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20, 5205–5214 (1992). [CrossRef] [PubMed]
  5. Z. Zhu, J. Chao, H. Yu, A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22, 3418–3422 (1994). [CrossRef] [PubMed]
  6. Z. Zhu, A. S. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28, 206–211 (1997). [CrossRef] [PubMed]
  7. M. L. Larramendy, W. El-Rifai, S. Knuutila, “Comparison of fluorescein isothiocyanate- and Texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31, 174–179 (1998). [CrossRef] [PubMed]
  8. G. S. Edwards, C. C. Davis, J. D. Saffer, M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984). [CrossRef]
  9. J. Hefti, A. Pan, A. Kumar, “Sensitive detection method of dielectric dispersions in aqueous-based, surface-bound macromolecular structures using microwave spectroscopy,” Appl. Phys. Lett. 75, 1802–1804 (1999). [CrossRef]
  10. H. J. Watts, D. Yeung, H. Parkes, “Real-time detection and quantification of DNA hybridization by an optical biosensor,” Anal. Chem. 67, 4283–4289 (1995). [CrossRef] [PubMed]
  11. E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, M. F. Lawrence, “Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect,” J. Phys. Chem. B 101, 2980–2985 (1997). [CrossRef]
  12. E. Palecek, M. Fojta, M. Tomschik, J. Wang, “Electrochemical biosensors for DNA hybridization and DNA damage,” Biosens. Bioelectron. 13, 621–628 (1998). [CrossRef] [PubMed]
  13. Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, “Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance,” Anal. Chem. 10, 1288–1296 (1998). [CrossRef]
  14. H. Zhang, H. Tan, R. Wang, W. Wei, S. Yao, “Immobilization of DNA on silver surface of bulk acoustic wave sensor and its application to the study of UV-C damage,” Anal. Chim. Acta 374, 31–38 (1998). [CrossRef]
  15. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J. K. Gimzewskil, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000). [CrossRef] [PubMed]
  16. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000). [CrossRef]
  17. L. L. Van Zandt, V. K. Saxena, “Millimeter-microwave spectrum of DNA: six predictions for spectroscopy,” Phys. Rev. A 39, 2672–2674 (1989). [CrossRef] [PubMed]
  18. W. Zhuang, Y. Feng, E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A. 41, 7033–7042 (1990). [CrossRef] [PubMed]
  19. M. Bykhovskaia, B. Gelmont, T. Globus, D. L. Woolard, A. C. Samuels, T. H. Duong, K. Zakrzewska, “Prediction of DNA far-IR absorption spectra based on normal mode analysis,” Theor. Chem. Acc. 106, 22–27 (2001). [CrossRef]
  20. H. Urabe, Y. Tominaga, “Low-lying collective modes of DNA double helix by Raman spectroscopy,” Biopolymers 21, 2477–2481 (1982). [CrossRef] [PubMed]
  21. S. Lindsay, S. A. Lee, J. W. Powell, T. Weidlich, C. Demarco, G. D. Lewen, N. J. Tao, “The origin of the A to B transitions in DNA fibres and films,” Biopolymers 27, 1015–1043 (1988). [CrossRef] [PubMed]
  22. J. W. Powell, G. S. Edwards, L. Genzel, F. Kremer, A. Wittlin, W. Kubasek, W. Peticolas, “Investigation of far-infrared vibrational modes in polynucleotides,” Phys. Rev. A 35, 3929–3939 (1987). [CrossRef] [PubMed]
  23. A. G. Markelz, A. Roitberg, E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000). [CrossRef]
  24. H. Urabe, Y. Tominaga, “Low frequency Raman spectra of DNA,” J. Phys. Soc. Jpn. 50, 3543–3543 (1981). [CrossRef]
  25. M. Nagel, C. Meyer, H.-M. Heiliger, T. Dekorsy, H. Kurz, R. Hey, K. Ploog, “Optical second-harmonic probe for ultra-high frequency on-chip interconnects with benzocyclobutene,” Appl. Phys. Lett. 72, 1018–1020 (1998). [CrossRef]
  26. M. D. Janezic, J. Baker-Jarvis, “Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements,” IEEE Trans. Microwave Theory Tech. 47, 2014–2020 (1999). [CrossRef]
  27. T. Pfeifer, H.-M. Heiliger, T. Loffler, C. Ohlhoff, C. Meyer, G. Lupke, H. G. Roskos, H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 586–604 (1996) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited