OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 11 — Apr. 8, 2002
  • pp: 2095–2102

Sensing wave-front amplitude and phase with phase diversity

Stuart M. Jefferies, Michael Lloyd-Hart, E. Keith Hege, and James Georges  »View Author Affiliations

Applied Optics, Vol. 41, Issue 11, pp. 2095-2102 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show in benchtop experiments that wave-front phase estimation by phase diversity can be significantly improved by simultaneous amplitude estimation. Processing speed, which will be important for real-time wave-front control applications, can be enhanced by use of small-format detectors with pixels that do not fully sample the diffraction limit. Using an object-independent phase-diversity algorithm, we show that, for both pointlike and extended objects, the fidelity of the phase and amplitude estimates degrades gracefully, rather than catastrophically, as the sampling becomes coarser. We show in simulation that the same algorithm also improves the fidelity of image reconstruction of complex targets.

© 2002 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: May 17, 2001
Revised Manuscript: November 13, 2001
Published: April 10, 2002

Stuart M. Jefferies, Michael Lloyd-Hart, E. Keith Hege, and James Georges, "Sensing wave-front amplitude and phase with phase diversity," Appl. Opt. 41, 2095-2102 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Gonsalves, R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. SPIE207, 32–39 (1979). [CrossRef]
  2. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  3. M. G. Löfdahl, G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. 107, 243–264 (1994).
  4. J. H. Seldin, M. F. Reiley, R. G. Paxman, B. E. Stribling, B. L. Ellerbroek, D. C. Johnston, “Space-object identification using phase-diverse speckle,” in Digital Image Recovery and Synthesis III, T. J. Schulz, ed., Proc. SPIE3170, 2–15 (1997).
  5. D. W. Tyler, S. D. Ford, B. R. Hunt, R. G. Paxman, M. C. Roggeman, J. C. Rountree, T. J. Schulz, K. J. Schulze, J. H. Seldin, D. G. Shepard, B. E. Stribling, W. C. van Kampen, B. M. Welsh, “Comparison of image reconstruction algorithms using adaptive optics instrumentation,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 160–171 (1998). [CrossRef]
  6. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  7. C. Roddier, F. Roddier, “Combined approach to the Hubble Space Telescope wave-front distortion analysis,” Appl. Opt. 32, 2992–3008 (1993). [CrossRef] [PubMed]
  8. J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993). [CrossRef] [PubMed]
  9. J. E. Krist, C. J. Burrows, “Phase-retrieval analysis of pre- and post-repair Hubble Space Telescope images,” Appl. Opt. 34, 4951–4964 (1995). [CrossRef] [PubMed]
  10. M. Mountain, F. Gillett, R. Kurz, “The Gemini 8m telescopes project,” in Optical Telescopes of Today and Tomorrow, A. L. Ardeberg, ed., Proc. SPIE2871, 15–23 (1996). [CrossRef]
  11. For information on the Next Generation Space Telescope, see http://www.ngst.nasa.gov .
  12. G. B. Scharmer, “Object-independent fast phase-diversity,” in High Resolution Solar Physics: Theory, Observations and Techniques, T. Rimmele, R. R. Radick, K. S. Balasubramaniam, eds., Astron. Soc. Pac. Conf. Ser.183, 330–341 (1999).
  13. M. G. Löfdahl, G. B. Scharmer, W. Wei, “Calibration of a deformable mirror and Strehl ratio measurements by use of phase diversity,” Appl. Opt. 39, 94–103 (2000). [CrossRef]
  14. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  15. M. Lloyd-Hart, S. M. Jefferies, E. K. Hege, J. R. P. Angel, “Wave-front sensing with time-of-flight phase diversity,” Opt. Lett. 26, 402–404 (2001). [CrossRef]
  16. J. H. Seldin, B. J. Thelan, D. A. Carrara, R. G. Paxman, J. J. Miller, W. B. van Kampen, “Phase-diverse wavefront sensing and multi-frame image reconstruction,” ERIM International Rep. 463000-7-F (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1999).
  17. R. A. Gonsalves, “Compensation of scintillation with a phase-only adaptive optic,” Opt. Lett. 22, 588–590 (1997). [CrossRef] [PubMed]
  18. R. Chidlaw, A. Devaney, R. A. Gonsalves, “Analytical studies of phase estimation techniques,” Defense Technical ReportRADC-TR-79-221-Vol. 1 (Rome Air Development Center, Griffiss Air Force Base, New York, 1979).
  19. D. Dravins, L. Lindegren, E. Mezey, A. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997). [CrossRef]
  20. R. Irwan, R. G. Lane, “Phase retrieval with prior information,” J. Opt. Soc. Am. A 15, 2302–2311 (1998). [CrossRef]
  21. W-Y. V. Leung, R. G. Lane, “Blind deconvolution of images blurred by atmospheric speckle,” in Image Reconstruction from Incomplete Data, M. A. Fiddy, R. P. Millane, eds., Proc. SPIE4123, 73–83 (2000). [CrossRef]
  22. E. K. Hege, “First order imaging methods: an introduction,” in Diffraction-Limited Imaging with Very Large Telescopes, D. M. Alloin, J.-M. Mariotti, eds. (Kluwer Academic, Boston, Mass., 1989), pp. 113–124. [CrossRef]
  23. W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge, U. Press, Cambridge, UK, 1992).
  24. R. K. Piña, R. C. Puetter, “Incorporation of spatial information in Bayesian image reconstruction: the maximum residual likelihood criterion,” Publ. Astron. Soc. Pac. 104, 1096–1103 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited