OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2191–2201

Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data

Zhongping Lee and Kendall L. Carder  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2191-2201 (2002)
http://dx.doi.org/10.1364/AO.41.002191


View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using an optimization technique, we derived subsurface properties of coastal and oceanic waters from measured remote-sensing reflectance spectra. These data included both optically deep and shallow environments. The measured reflectance covered a spectral range from 400 to 800 nm. The inversions used data from each 5-, 10-, and 20-nm contiguous bands, including Sea-viewing Wide Field-of-view Sensor (SeaWiFS), moderate-resolution imaging spectrometer (MODIS), and a self-defined medium-resolution imaging spectrometer (MERIS) channels, respectively. This study is designed to evaluate the influence of spectral resolution and channel placement on the accuracy of remote-sensing retrievals and to provide guidance for future sensor design. From the results of this study, we found the following: (1) use of 10-nm-wide contiguous channels provides almost identical results as found for 5-nm contiguous channels; (2) use of 20-nm contiguous channels and MERIS provides comparable results with those with 5-nm contiguous channels for deep waters, but use of contiguous 20-nm channels perform better than MERIS for optically shallow waters; and (3) SeaWiFS or MODIS channels work fine for deep, clearer waters (total absorption coefficient at 440 nm < 0.3 m-1), but introduce more errors in bathymetry retrievals for optically shallow waters. The inclusion of the 645-nm MODIS land band in its channel set improves inversion returns for both deep and shallow waters.

© 2002 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(200.4560) Optics in computing : Optical data processing
(290.1350) Scattering : Backscattering

History
Original Manuscript: May 9, 2001
Revised Manuscript: October 29, 2001
Published: April 20, 2002

Citation
Zhongping Lee and Kendall L. Carder, "Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data," Appl. Opt. 41, 2191-2201 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Morel, “Minimum requirements for an operational ocean-colour sensor for the open ocean,” IOCCG Rep. 1 (International Ocean-Colour Coordinating Group, Villefranche-sur-Mer, France, 1998).
  2. S. Sathyendranath, “Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters,” IOCCG Rep. 3 (International Ocean-Colour Coordinating Group, Dartmouth, Canada, 2000).
  3. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  4. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res. 96, 20599–20611 (1991). [CrossRef]
  5. K. L. Carder, R. F. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  6. S. Sathyendranath, F. E. Hoge, T. Platt, R. N. Swift, “Detection of phytoplankton pigments from ocean color: improved algorithms,” Appl. Opt. 33, 1081–1089 (1994). [CrossRef] [PubMed]
  7. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  8. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res. 103, 27967–27978 (1997). [CrossRef]
  9. J. L. Mueller, R. W. Austin, Ocean Optics Protocols for SeaWiFS Validation, NASA Tech. Mem. 104566, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  10. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  11. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  12. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  13. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991). [CrossRef]
  14. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  15. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  16. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef] [PubMed]
  17. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  18. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. Academic, New York, 1974), pp. 1–24.
  19. Z. P. Lee, K. L. Carder, K. P. Du, “Particle phase function and remote-sensing reflectance model: a revisit,” presented at the Ocean Color Research Team Meeting, San Diego, Calif., May 21–24, 2001.
  20. Z. P. Lee, K. L. Carder, R. F. Chen, T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001). [CrossRef]
  21. H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to ocean optics,” in Ocean Optics VI, S. Q. Duntley, ed., Proc. SPIE208, 1–43 (1980). [CrossRef]
  22. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res. 96, 20599–20611 (1991). [CrossRef]
  23. R. Pope, E. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  24. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  25. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  26. K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989). [CrossRef]
  27. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 160–166 (1996). [CrossRef]
  28. A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanol. Acta. 7, 33–50 (1987).
  29. R. A. Arnone, P. Maritinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” in Ocean Optics XIV, Kailua-Kona, Hawaii, 10–13 November 1998.
  30. S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep-Sea Res. 36, 431–453 (1989). [CrossRef]
  31. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996). [CrossRef] [PubMed]
  32. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  33. J. L. Mueller, “Ocean color spectra measured off the Oregon coast: characteristic vectors,” Appl. Opt. 15, 394–402 (1976). [CrossRef] [PubMed]
  34. Z. P. Lee, K. L. Carder, “Multiband analytical algorithm for deriving absorption and backscattering coefficients from remote-sensing reflectance for optically deep waters,” Appl. Opt. submitted for publication.
  35. M. R. Wernand, S. J. Shimwell, J. C. DeMunck, “A simple method of full spectrum reconstruction by a five-band approach for ocean color application,” Int. J. Remote Sens. 18, 1977–1986 (1997). [CrossRef]
  36. Z. P. Lee, K. L. Carder are preparing a manuscript to be called “Applying MODIS channels to high chlorophyll-concentration waters after correcting chlorophyll fluorescence.”
  37. M. H. Wang, B. A. Franz, R. A. Barnes, C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343–348 (2001). [CrossRef]
  38. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  39. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, B. T. Vinyard, “Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium Breve,” Limnol. Oceanogr. 42, 1240–1251 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited