OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2228–2231

Low-temperature-GaAs device used simultaneously as a mode-locking device and as a photoconductive switch

Martin Leitner, Peter Glas, Peter Semionyk, Marc Wrage, Jens Herfort, and Lutz Däweritz  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2228-2231 (2002)
http://dx.doi.org/10.1364/AO.41.002228


View Full Text Article

Enhanced HTML    Acrobat PDF (85 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a low-temperature-grown GaAs device that combines the features of mode locking and photoconductive switching. The mode-locking mechanism is based on intensity-dependent defocusing. Additionally, the generated carriers produce an electrical signal in the biased switch geometry. This technique allows for simultaneous generation of synchronized optical and electrical pulse trains with a single device.

© 2002 Optical Society of America

OCIS Codes
(040.5150) Detectors : Photoconductivity
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.0250) Optical devices : Optoelectronics

History
Original Manuscript: May 29, 2001
Revised Manuscript: January 8, 2002
Published: April 20, 2002

Citation
Martin Leitner, Peter Glas, Peter Semionyk, Marc Wrage, Jens Herfort, and Lutz Däweritz, "Low-temperature-GaAs device used simultaneously as a mode-locking device and as a photoconductive switch," Appl. Opt. 41, 2228-2231 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  2. M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999). [CrossRef]
  3. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975). [CrossRef]
  4. H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998). [CrossRef]
  5. M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000). [CrossRef]
  6. S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992). [CrossRef]
  7. C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996). [CrossRef]
  8. J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000). [CrossRef]
  9. D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993). [CrossRef]
  10. D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994). [CrossRef]
  11. K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994). [CrossRef]
  12. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992). [CrossRef]
  13. M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited