OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2240–2250

Effect of periodic background loss on grating spectra

Vittoria Finazzi and Mikhail N. Zervas  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2240-2250 (2002)
http://dx.doi.org/10.1364/AO.41.002240


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of periodic loss on the performance of refractive-index gratings has been studied in detail. It is shown that the loss periodicity and relative phase strongly affects the symmetry of the reflection, transmission, and loss spectra. This asymmetry is explained successfully through consideration of the overlap between the standing-wave intensity distribution and the periodic loss pattern.

© 2002 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components

History
Original Manuscript: March 25, 2001
Revised Manuscript: November 19, 2001
Published: April 20, 2002

Citation
Vittoria Finazzi and Mikhail N. Zervas, "Effect of periodic background loss on grating spectra," Appl. Opt. 41, 2240-2250 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. J. Chen, A. W. Snyder, D. N. Payne, “Twin core nonlinear couplers with gain and loss,” IEEE J. Quantum Electron. 28, 239–245 (1992). [CrossRef]
  2. Special issue on fiber gratings, photosensitivity, and poling, J. Lightwave Technol. 15, 1261–1512 (1997).
  3. A. V. Kavokin, M. A. Kaliteevski, “Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures,” J. Appl. Phys. 79, 595–598 (1996). [CrossRef]
  4. Y. Boucher, “Influence of a localized scattering center upon the spectral characteristics of a distributed-feedback structure,” IEEE Photon. Technol. Lett. 9, 1454–1456 (1997). [CrossRef]
  5. P. S. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991). [CrossRef]
  6. T. Fessant, Y. Boucher, “Additional modal selectivity induced by a localized defect in quarter-wave-shifted DFB lasers,” IEEE J. Quantum Electron. 34, 602–608 (1998). [CrossRef]
  7. H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  8. D. A. Cardimona, M. P. Sharma, V. Kovanis, A. Gavrielides, “Dephased index and gain coupling in distributed feedback lasers,” IEEE J. Quantum Electron. 31, 60–66 (1995). [CrossRef]
  9. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  10. D. Johlen, F. Knappe, H. Renner, E. Brinkmeyer, “UV-induced absorption, scattering and transition losses in UV side- written fibers,” in Optical Fiber Communication Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 50–52.
  11. V. Grubsky, D. S. Starodubov, J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4–5.4-eV ultraviolet light,” Opt. Lett. 24, 729–731 (1999). [CrossRef]
  12. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998). [CrossRef]
  13. M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1988). [CrossRef]
  14. R. B. Bylsma, D. H. Olson, A. M. Glass, “Photochromic gratings in photorefractive materials,” Opt. Lett. 13, 853–855 (1988). [CrossRef] [PubMed]
  15. R. S. Cudney, R. M. Pierce, G. D. Bacher, J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B 15, 1326–1332 (1991). [CrossRef]
  16. M. Liphardt, S. Ducharme, “Measurement of the photorefractive grating phase shift in a polimer by an ac phase-modulation technique,” J. Opt. Soc. Am. B 15, 2154–2160 (1998). [CrossRef]
  17. M. Gehrtz, J. Pinsl, C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987). [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  19. L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed at 193-nm excimer laser,” Opt. Lett. 21, 2032–2034 (1996). [CrossRef] [PubMed]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  21. D. I. Babic, S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorbance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992). [CrossRef]
  22. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited